

Sanjiv Refresher Nathematics

Class VII

Based on Latest NCERT Textbook

Publisher : SANJIV PRAKASHAN
Jaipur

Published by : SANJIV PRAKASHAN Dhamani Market, Chaura Rasta,

JAIPUR - 302003 email : sanjeevprakashanjaipur@gmail.com website : www.sanjivprakashan.com

□ © Publisher

Laser Type Setting :
 Sanjiv Prakashan (DTP Department),
 Jaipur

Every effort has been made to remove the mistakes and omissions in this book. In case of any suggestion or any error found, send an email or post a letter to us at the following address : Email : sanjeevprakashanjaipur@gmail.com Postal Address : Publication Department Sanjiv Prakashan, Dhamani Market, Chaura Rasta, Jaipur-302003 Your suggestions shall be taken care of in our next edition. Though all the precautions have been taken in publishing this book yet for any mistake the author, the publisher or the printer is not liable. All disputes are subjected to Jaipur Jurisdiction only. © Rights are reserved. No part of this publication may be produced in any form; by photocopy,

© Rights are reserved. No part of this publication may be produced in any form; by photocopy, microfilm, xerography, recording or otherwise without the prior written permission of the publisher. Any breach will entail legal action and prosecution without further notice.

No.	Chapter/Unit	Objectives
1.	Integers	To learn properties of integers (through patterns); Solve word problems of integers (all operations).
2.	Fractions and Decimals	Understand operations on rational numbers; rational number as a decimal and word problems involving mixed fractions.
3.	Data Handling	Calculate mean, median and mode, use of bar graphs.
4.	Simple Equations	Understand simple linear equations in one variable (in contextual problems) with two operations.
5.	Lines and Angles	Understand pairs of angles; Properties of parallel lines.
6.	Triangle and its Properties	Learn the different angle sum properties of triangles.
7.	Comparing Quantities	Learn to understand and calculate interest, increase or decrease as percent, profit or loss as percent.
8.	Rational Numbers	Understand operations on rational numbers and word problems of rational numbers.
9.	Perimeter and Area	Understand and calculate the perimeter and area of different figures using basic units.
10.	Algebraic Expressions	Learn to generate algebraic expressions (simple) involving one or two variables.
11.	Exponents and Powers	Understand the Laws of exponents; express numbers in exponential form.
12.	Symmetry	Learn reflection and rotation symmetry of simple figures.
13.	Visualising Solid Shapes	Understand the concept of faces, edges and vertices of different solid shapes.

Contents-

1.	Integers	1-15
2.	Fractions and Decimals	16-38
3.	Data Handling	39-63
4.	Simple Equations	64-87
5.	Lines and Angles	88-109
6.	The Triangle and Its Properties	110-141
7.	Comparing Quantities	142-167
8.	Rational Numbers	168-194
9.	Perimeter and Area	195-211
10.	Algebraic Expressions	212-229
11.	Exponents and Powers	230-249
12.	Symmetry	250-266
13.	Visualising Solid Shapes	267-281
•	Brain-Teasers	282-285

Integers

Properties of Integers under Addition

(i) **Closure property :** The sum of two integers is always an integer. If a and b are integers, then a + b is also an integer.

For example : (-2) + (-5) = -7 which is an integer.

(ii) Commutative property : For any two integers *a* and *b*

 a + b = b + a

 For example :
 5 + (-4) = 1 and (-4) + 5 = 1

 \therefore 5 + (-4) = (-4) + 5

 (iii) Associative property : For any three integers a, b, c

 (a + b) + c = a + (b + c)

 For example :
 [-6 + 7] + 3 = 1 + 3 = 4

 and
 -6 + [7 + 3] = -6 + 10 = 4

 \therefore [-6 + 7] + 3 = -6 + [7 + 3]

 (iv) Existence of additive identity : 0 is the additive identity of the example :

(iv) Existence of additive identity : 0 is the additive identity of every integer *a*, *i.e.*

a + 0 = 0 + a = a

For example : -5 + 0 = 0 + (-5) = -5

(v) Existence of additive inverse : If a is an integer, then -a is its additive inverse i.e.

$$a + (-a) = 0$$

For example : 5 + (-5) = 0 or -5 is the additive inverse of 5 and 16 is the additive inverse of -16.

Note : 0 is the only integer whose additive inverse is same as the integer, *i.e.* the additive inverse of 0 is 0.

Properties of Integers under Subtraction

(i) **Closure Property :** The differences of two integers is also an integer. **Example :** 2 - 5 = -3 (an integer)

(ii) Commutative Property : For any two integers a and b, $a - b \neq b - a$, *i.e.* the subtraction of integers is not commutative.

Example: $5 - (-3) \neq -3 - (5)$

5 - (-3) = 8 and -3 - (5) = -8

(iii) Associative Property : For any three integers *a*, *b* and *c*, $a - (b - c) \neq (a - b) - c$ Example : -16 - [(-14) - 8] = -16 - (-22) = -16 + 22 = 6[-16 - (-14)] - 8 = [-16 + 14] - 8 = -2 - 8 = -10 $-16 - [(-14) - 8] \neq [-16 - (-14)] - 8$

(Page 4)

Hence, subtraction of integers is not associative.

Try These (With Solution)

- **Q. 1.** Write a pair of integers whose sum gives :
- (a) a negative integer
- (b) zero
- (c) an integer smaller than both the integers.
- (d) an integer smaller than only one of the integers.
- (e) an integer greater than both the integers.

Solution: (a) (-5) + 3 = -2 (b) (2) + (-2) = 0 (c) (-2) + (-5) = (-7)(d) (-5) + 3 = -2 (e) 5 + 2 = 7

- Q. 2. Write a pair of integers whose difference gives :
- (a) a negative integer
- (b) zero
- (c) an integer smaller than both the integers.
- (d) an integer greater than only one of the integers.
- (e) an integer greater than both the integers.
- Solution: (a) 4 and 9
 - Difference : 4 9 = -5 (negative integer)
 - (b) 6 and 6Difference : - 6 - (- 6) = 0
 - (c) 8 and 5
 Difference : 8 5 = 3
 (3 is smaller than 8 as well as 5)
 - (d) 13 and 4
 - Difference : 13 4 = 9(9 is greater than 4)
 - (e) 11 and 7
 Difference : 11 (-7) = 18
 (18 is greater than 11 as well as 7)

EXERCISE 1.1

Q. 1. Write down a pair of integers whose : (a) sum is -7 (b) difference is -10 (c) sum is 0 Solution : (a) (-3) + (-4) = -7 (b) (-7) - 3 = -10 (c) (-2) + 2 = 0

2

3

Q. 2. (a) Write a pair of negative integers whose difference gives 8.

(b) Write a negative integer and a positive integer whose sum is – 5.

(c) Write a negative integer and a positive integer whose difference is – 3.

Solution : (a) (-5) - (-13) = -5 + 13 = 8 (b) (-15) + 10 = -5 (c) (-2) - (1) = -3

Q. 3. In a quiz, team A scored – 40, 10, 0 and team B scored 10, 0, – 40 in three successive rounds. Which team scored more? Can we say that we can add integers in any order?

Solution : Scores of team A = (-40) + 10 + 0 = -30

Total scores of team B = 10 + 0 + (-40) = -30, hence both team scored equal.

Yes, we can add integers in any order (by commutative property).

Q. 4. Fill in the blanks to make the following statements true :

(i) $(-5) + (-8) = (-8) + (\dots)$ (ii) $-53 + \dots = -53$

(iii) $17 + \dots = 0$ (iv) $[13 + (-12)] + (\dots) = 13 + [(-12) + (-7)]$

 $(\mathbf{v}) (-4) + [15 + (-3)] = [-4 + 15] + \dots$

Solution : (i) (-5) (Commutative property)

(ii) 0 (Additive inverse property)

(iii) (-17) (Additive identity property)

(iv) (-7) (Associative property)

(v) (-3) (Associative property)

Multiplication of Integers

Multiplication of whole numbers is nothing but repeated addition :

For example : $5 + 5 + 5 = 3 \times 5 = 15$

Product of even numbers of negative integers is positive, whereas product of odd number of negative integers is negative.

For example :

mple: $(-4) \times (-3) = +12$ $(-2) \times (-1) \times (-3) = -6$ $(-10) \times (-2) \times (-3) \times (-5) = 300$

Multiplication of a positive and a negative integers on a number line :

For example: $(-4) + (-4) + (-4) + (-4) + (-4) = 5 \times (-4) = -20$

Try These (With Solution)

Q. Find : (i) 4 × (-8) (ii) 8 × (-2) (iii) 3 × (-7) (iv) 10 × (-1) using number line. Solution :

(Page 5)

Multiplication of a positive and a negative integers without using number line

While multiplying a positive integer and a negative integer, we multiply them as whole numbers and put a (-) sign before the product. Thus, we get a negative integer.

For example : Find $3 \times (-5)$ in a different way.

First find 3×5 and then put minus sign (–) before the product obtained. You get – 15. Thus, we find – $(3 \times 5) = -15$.

Try These (With Solution)

Q. Find : (i) $6 \times (-19)$ (ii) $12 \times (-32)$ (iii) $7 \times (-22)$ Solution : (i) $6 \times (-19) = -(6 \times 19) = -114$ (ii) $12 \times (-32) = -(12 \times 32) = -384$ (iii) $7 \times (-22) = -(7 \times 22) = -154$

Try These (With Solution)

Q. 1. Find : (a) $15 \times (-16)$ (b) $21 \times (-32)$ (c) $(-42) \times 12$ (d) -55×15 **Solution :** Since $-a \times b = -(a \times b) = a \times -b$ $(a) - (15 \times 16) = -240$ $(c) - (42 \times 12) = -504$ $(b) - (21 \times 32) = -672$ $(d) - (55 \times 15) = -825$ **Q.** 2. Check if (a) $25 \times (-21) = (-25) \times 21$ (b) $(-23) \times 20 = 23 \times (-20)$ Write five more such examples. **Solution**: (a) LHS = $25 \times (-21) = -(25 \times 21) = -525$ (b) LHS = $(-23) \times 20 = -(23 \times 20) = -460$ $RHS = -25 \times 21 = -(25 \times 21) = -525$ $RHS = (23) \times (-20) = -(23 \times 20) = -460$ LHS = RHSLHS = RHSHence verified. Hence verified. Five more examples are : (i) $15 \times (-16) = (-15) \times 16$ (ii) $(-24) \times 22 = 24 \times (-22)$ (iii) $(-19) \times 17 = 19 \times (-17)$ (iv) $20 \times (-10) = (-20) \times 10$ (v) $17 \times (-12) = (-17) \times 12$

(Page 6)

(Page 7)

Integers

Try These (With Solution)

Q. 1. (i) Starting from (- 5) × 4, find (- 5) × (- 6) (ii) Starting from (- 6) × 3, find (- 6) × (- 7)

Solution:

(i) $-5 \times 4 = -20$ $-5 \times 2 = -10 = (-15) - (-5)$ $-5 \times 0 = 0 = -5 - (-5)$ $(-5) \times (-2) = 10 = 5 - (-5)$ $(-5) \times (-4) = 20 = 15 - (-5)$ $(-5) \times (-6) = 30 = 25 - (-5)$ (ii) $(-6) \times 3 = -18$ $(-6) \times 1 = -6 = (-12) - (-6)$ $(-6) \times (-1) = 6 = 0 - (-6)$ $(-6) \times (-3) = 18 = 12 - (-6)$ $(-6) \times (-5) = 30 = 24 - (-6)$ $(-6) \times (-7) = 42 = 36 - (-6)$ $-5 \times 3 = -15 = (-20) - (-5)$ $-5 \times 1 = -5 = (-10) - (-5)$ $(-5) \times (-1) = 5 = 0 - (-5)$ $(-5) \times (-3) = 15 = +10 - (-5)$ $(-5) \times (-5) = 25 = 20 - (-5)$ $(-6) \times 2 = -12 = (-18) - (-6)$ $(-6) \times 0 = 0 = (-6) - (-6)$ $(-6) \times -2 = 12 = 6 - (-6)$ $(-6) \times -4 = 24 = 18 - (-6)$ $(-6) \times -6 = 36 = 30 - (-6)$

5

Note : The product of two negative integers is a positive integer. We multiply the two negative integers as whole numbers and put the positive sign before the product. In general, for any two positive integers a and b,

 $(-a) \times (-b) = a \times b$

Try These (With Solution)

....

Q. Find : (i) $(-31) \times (-100)$ (ii) $(-25) \times (-72)$ (iii) $(-83) \times (-28)$ Solution : Since $(-a) \times (-b) = a \times b$ (i) $31 \times 100 = 3100$ (ii) $25 \times 72 = 1800$ (iii) $83 \times 28 = 2324$

Properties of Integers under Multiplication

(i) **Closure Property :** The product of 2 integers is also an integer, i.e. if *a*, *b* and *c* are integers then

 $a \times b = c$

For example : $13 \times (-5) = -65$, which is an integer.

(ii) Commutative Property : For any 2 integers a and b

$$a \times b = b \times a$$

For example : $(-4) \times (-5) = 20$ and $(-5) \times (-4) = 20$

$$(-4) \times (-5) = (-5) \times (-4)$$

(iii) Multiplication by Zero : We know that any whole number when multiplied by zero gives zero. Let us observe the following table showing the product of a negative integer and zero.

 $(-3) \times 0 = 0$ $0 \times (-4) = 0$ $(-5) \times 0 = 0$ $0 \times (-6) = 0$ (Page 8)

This shows that the product of a negative integer and zero is zero. In general, for any integer 'a'

$a \times 0 = 0 \times a = 0$

(iv) **Multiplicative Identity :** We know that 1 is the multiplicative identity for whole numbers. Let us observe the following table showing the product of a negative integer and 1.

$$(-3) \times 1 = -3, (-4) \times 1 = -4$$

 $1 \times (-5) = -5, 1 \times (-6) = -6$

The table shows that 1 is the multiplicative identity for integers also. In general, for any integer 'a', we have :

$a \times 1 = 1 \times a = a$.

Multiplication with (-1): Let us observe the following table showing the product of an integer with (-1).

 $\begin{array}{l} (-3)\times(-1)=3,\, 3\times(-1)=-3\\ (-6)\times(-1)=6,\, (-1)\times13=-13\\ (-1)\times(-25)=25,\, 18\times(-1)=-18 \end{array}$

This shows that (-1) is not the multiplication identity for integers as when multiply on integer with (-1) or (-1) with an integer, we do not get the same integer.

Therefore, for any integer 'a', we have :

 $a \times (-1) = (-1) \times a = -a \neq a$

(v) Associative Property : For 3 integers a, b and $c, a \times (b \times c) = (a \times b) \times c$ For example : $(-2) \times [6 \times (-5)] = (-2) \times (-30) = 60$ and $[(-2) \times 6] \times (-5) = (-12) \times (-5) = 60$ \therefore $(-2) \times [6 \times (-5)] = [(-2) \times 6] \times (-5)$

The product of three integers does not depend upon the grouping of integers and this is called the associative property for multiplication of integers.

(vi) **Distributive Property :** If a, b and c are three integers, then :

(a) $a \times (b + c) = (a \times b) + (a \times c) \rightarrow \text{Distribution of addition over multiplication}$ (b) $a \times (b - c) = (a \times b) - (a \times c) \rightarrow \text{Distribution of subtraction over multiplication}$ For example :

 $(-2) \times [(-6) + 8] = -2 \times 2 = -4$ and $[(-2) \times (-6)] + [(-2) \times 8] = 12 + (-16) = -4$ $\therefore \qquad (-2) \times [(-6) + 8] = [(-2) \times (-6)] + [(-2) \times 8]$

Try These (With Solution)

Q. 1. (i) Is $10 \times [6 + (-2)] = 10 \times 6 + 10 \times (-2)$? (ii) Is $(-15) \times [(-7) + (-1)] = (-15) \times (-7) + (-15) \times (-1)$? **Solution :** (i) LHS = $10 \times [6 + (-2)]$ $RHS = 10 \times 6 + 10 \times (-2)$ $= 10 \times 4 = 40$ = 60 + (-20) = 40 $10 \times [6 + (-2)] = 10 \times 6 + 10 \times (-2)$... LHS = $(-15) \times [(-7) + (-1)]$ (ii) RHS = $(-15) \times (-7) + (-15) \times (-1)$ $= -15 \times (-8) = 120$ = 105 + 15 = 120 $-15 \times [(-7) + (-1)] = (-15) \times (-7) + (-15) \times (-1)$ *.*.

(Page 13)

7

Solution : (i) LHS = 10 × [6 - (-2)] RHS = 10 × 6 - 10 × (-2) = 10 × 8 = 80 = 60 + 20 = 80 ∴ 10 × [6 - (-2)] = 10 × 6 - 10(-2) (ii) LHS = (-15) × [(-7) - (-1)] RHS = (-15) × (-7) - (-15) × (-1) = (-15) × (-7 + 1) = 105 - (15) = (-15) × (-7) - (-1)] RHS = (-15) × (-7) - (-15) × (-1) = (-15) × (-7) - (-1)] = [(-15) × (-1)] EXERCISE 1.2 Q. 1. Find each of the following products : (a) 3 × (-1) (b) (-1) × 225 (c) (-21) × (-30) (d) (-316) × (-1) (e) (-15) × 0 × (-18) (f) (-12) × (-11) × (10) (g) 9 × (-3) × (-6) (h) (-18) × (-5) × (-4) (i) (-1) × (-2) × (-3) × 4 (j) (-3) × (-6) × (-2) × (-1) Solution : (a) 3 × (-1) = - (3 × 1) = -3 (b) (-1) × 225 = - (1 × 225) = -225 (c) (-21) × (-30) = + (21 × 30) = 630 (d) (-316) × (-1) = + (316 × 1) = 316 (e) (-15) × 0 × (-18) = 0 (f) (-12) × (-11) × (10) = (12 × 11 × 10) = 1320 (g) 9 × (-3) × (-6) = (9 × 3 × 6) = 162 (h) (-18) × (-5) × (-4) = -18 × (5 × 4) = -18 × 20 = -360 (i) (-1) × (-2) × (-3) × 4 = -(1 × 2 × 3) × 4 = -24 (j) (-3) × (-6) = (-2) × (-1) = (3 × 6 × 2 × 1) = 36 Q. 2. Verify the following: (a) 18 × [7 + (-3]] = [18 × 7] + [18 × (-3]] (b) (-21) × [(-4) + (-6)] = [(-21) × (-4)] + [(-21) × (-6)] Solution : (a) LHS = 18 × [7 + (-3]] = 18 × 4 = 72 RHS = [18 × 7] + [18 × (-3]] = 126 + (-54) = 126 - 54 = 72 ∴ LHS = RHS H Hence verified. (b) LHS = (-21) × [(-4) + (-6)] = -21 × (-10) = 210 RHS = [(-21) × (-4)] + [(-21 × -6)] = -21 × (-10) = 10 RHS = [(-21) × (-4)] + [(-21 × -6)] = -21 × (-10) = 10 RHS = [(-21) × (-4)] + [(-21 × -6)] = -21 × (-10) = 210 RHS = [(-21) × (-4)] + [(-21 × -6)] = -21 × (-10) = 210 RHS = [(-21) × (-4)] + [(-21 × -6)] = -21 × (-10) = 210 RHS = [(-21) × (-4)] + [(-21 × -6)] = -21 × (-10) = 210 RHS = [(-21) × (-4)] + [(-21 × -6)] = -21 × (-10) = 210 RHS = [(-21) × (-4)] + [(-21 × -6)] = -21 × (-10) = 210 RHS = [(-21) × (-4)] + [(-21 × -6)] = -21 × (-10) = 210 RHS = [(-21) × (-4)] + [(-21 × -6)] = -21 × (-10) = 210 RHS = [(-21) × (-4)] + [(-21 × -6)] = -21 × (-10) = 20 ∴ LHS = RHS Hence verified.	Q. 2. (i) Is 1 (ii) Is	L0 × [6 (- 15)	$(-2) = 10 \times 6$ × $[(-7) - (-1)] =$	- 10 × (- 2)3 = (- 15) × (- 1	? 7) - (-	$-15) \times (-1)?$	
(i) LHS = 10 × [6 - (-2)] RHS = 10 × 6 - 10 × (-2) = 10 × [6 + 2] = 60 - (-20) = 10 × 8 = 80 = 60 + 20 = 80 ∴ 10 × [6 - (-2)] = 10 × 6 - 10(-2) (ii) LHS = (-15) × [(-7) - (-1)] RHS = (-15) × (-7) - (-15) × (-1) = (-15) × (-7 + 1) = 105 - (15) = (-15) × (-7 + 1) = 105 - (15) = (-15) × (-7) - [(-15) × (-1)] EXERCISE 1.2 Q. 1. Find each of the following products : (a) 3 × (-1) (b) (-1) × 225 (c) (-21) × (-30) (d) (-316) × (-1) (e) (-15) × 0 × (-18) (f) (-12) × (-11) × (10) (g) 9 × (-3) × (-6) (h) (-18) × (-5) × (-4) (i) (-1) × (-2) × (-3) × 4 (j) (-3) × (-6) × (-2) × (-1) Solution : (a) 3 × (-1) = -(3 × 1) = -3 (b) (-1) × 225 = -1225 (c) (-21) × (-30) = +(21 × 30) = 630 (d) (-316) × (-1) = +(316 × 1) = 316 (e) (-15) × 0 × (-18) = 0 (f) (-12) × (-11) × (10) = (12 × 11 × 10) = 1320 (g) 9 × (-3) × (-6) = (9 × 3 × 6) = 162 (h) (-18) × (-5) × (-4) = -18 × (5 × 4) = -18 × 20 = -360 (i) (-1) × (-2) × (-3) × 4 = -(1 × 2 × 3) × 4 = -24 (j) (-3) × (-6) × (-2) × (-1) = (3 × 6 × 2 × 1) = 36 Q. 2. Verify the following : (a) 18 × [7 + (-3)] = [18 × 7] + [18 × (-3)] (b) (-21) × [(-4) + (-6)] = [(-21) × (-4)] + [(-21) × (-6)] Solution : (a) LHS = 18 × [7 + (-3)] = 18 × 4 = 72 RHS = [18 × 7] + [18 × (-3)] = 126 + (-54) = 126 - 54 = 72 ∴ LHS = RHS H Hence verified. (b) LHS = (-21) × [(-4) + (-6)] = -21 × (-10) = 210 RHS = [(-21) × [(-4) + (-6)] = -21 × (-10) = 210 RHS = [(-21) × ((-4) + [(-21) × (-6)] = 84 + 126 = 210 ∴ LHS = RHS Hence verified. Q. 3. (i) For any integer a, what is (-1) × a equal to? (ii) Determine the integer whose product with (-1) is : (a) -22 (b) 37 (c) 0 Solution : (i) - 1 × a = -(1 × a) = -a, where a is an integer. (iii) 0)	Solution :						
$= 10 \times [6 + 2] = 60 - (-20)$ $= 10 \times 8 = 80 = 60 + 20 = 80$ $\therefore 10 \times [6 - (-2)] = 10 \times 6 - 10(-2)$ (ii) LHS = (-15) × (-7) - (-1)] RHS = (-15) × (-7) - (-15) × (-1) $= (-15) \times (-7 + 1) = 105 - (15)$ $= (-15) \times (-7) - (-1)] = [(-15) \times (-7)] - [(-15) \times (-1)]$ EXERCISE 1.2 9.1. Find each of the following products: (a) $3 \times (-1)$ (b) $(-1) \times 225$ (c) $(-21) \times (-30)$ (d) $(-316) \times (-1)$ (e) $(-15) \times 0 \times (-18)$ (f) $(-12) \times (-11) \times (10)$ (g) $9 \times (-3) \times (-6)$ (h) $(-18) \times (-5) \times (-4)$ (i) $(-1) \times (-2) \times (-3) \times 4$ (j) $(-3) \times (-6) \times (-2) \times (-1)$ Solution: (a) $3 \times (-1) = -(3 \times 1) = -3$ (b) $(-1) \times 225 = -(1 \times 225) = -225$ (c) $(-21) \times (-30) = +(21 \times 30) = 630$ (d) $(-316) \times (-1) = +(316 \times 1) = 316$ (e) $(-15) \times 0 \times (-18) = 0$ (f) $(-12) \times (-13) \times (-6) = (9 \times 3 \times 6) = 162$ (h) $(-18) \times (-5) \times (-4) = -18 \times (5 \times 4) = -18 \times 20 = -360$ (i) $(-1) \times (-2) \times (-3) \times 4 = -(1 \times 2 \times 3) \times 4 = -24$ (j) $(-3) \times (-6) \times (-2) \times (-1) = (3 \times 6 \times 2 \times 1) = 36$ 9.2. Verify the following : (a) $18 \times [7 + (-3)] = [18 \times 7] + [18 \times (-3)]$ (b) $(-21) \times [-4] + (-6] = [(-21) \times (-4]] + [(-21) \times (-6)]$ Solution : (a) LHS = $18 \times [7 + (-3)] = 18 \times 4 = 72$ RHS = $[18 \times 7] + [18 \times (-3)] = 126 + (-54) = 126 - 54 = 72$ \therefore LHS = RHS HS Hence verified. (b) LHS = $(-21) \times [(-4) + (-6)] = -21 \times (-10) = 210$ RHS = $[(-21) \times (-4)] + [(-21 \times -6)] = -21 \times (-10) = 210$ RHS = $[(-21) \times (-4)] + [(-21 \times -6)] = -21 \times (-10) = 210$ RHS = $[18 \times 7] + [18 \times (-3)] = 108 \times 4 = 72$ RHS = $[18 \times 7] + (18 \times (-3)] = 126 + (-54) = 126 - 54 = 72$ \therefore LHS = RHS Hence verified. (c) LHS = RHS Hence verified. (d) $RHS = [(-21) \times (-4)] + [(-21 \times -6)] = -21 \times (-10) = 210$ RHS = $[(-21) \times (-4)] + [(-21 \times -6)] = -21 \times (-10) = 210$ RHS = $[12 \times (-10) = 210$ $RHS = [12 \times (-10) = 210$ $RHS = [12 \times (-10) = 210$ $RHS = [12 \times (-10) = 210$ RHS = RHS Hence verified. (c) 0 Solution : (i) $-1 \times a = -(1 \times a) = -a$, where a is an integer. (ii) Determine the integer whose product with (-1) is: (a) -22 (b) 37 (c) 0	(i)	LHS	$= 10 \times [6 - (-2)]$]	RHS	$= 10 \times 6 - 10 \times (-2)$	
$= 10 \times 8 = 80 = 60 + 20 = 80$ ∴ $10 \times [6 - (-2)] = 10 \times 6 - 10(-2)$ (ii) LHS = (-15) × [(-7) - (-1)] RHS = (-15) × (-7) - (-15) × (-1) = (-15) × (-7 + 1) = 105 - (15) = (-15) × [(-7) - (-1)] = [(-15) × (-7)] - [(-15) × (-1)] EXERCISE 1.2 Q. 1. Find each of the following products: (a) $3 \times (-1)$ (b) (-1) × 225 (c) (-21) × (-30) (d) (-316) × (-1) (e) (-15) × 0 × (-18) (f) (-12) × (-11) × (10) (g) $9 \times (-3) \times (-6)$ (h) (-18) × (-5) × (-4) (i) (-1) × (-2) × (-3) × 4 (j) (-3) × (-6) × (-2) × (-1) Solution : (a) $3 \times (-1) = -(3 \times 1) = -3$ (b) (-1) × 225 = -(1 × 225) = -225 (c) (-21) × (-30) = + (21 × 30) = 630 (d) (-316) × (-1) = (316 × 1) = -3 (b) (-1) × 225 = -(1 × 225) = -225 (c) (-21) × (-30) = + (21 × 30) = 630 (d) (-316) × (-1) = + (316 × 1) = 316 (e) (-15) × 0 × (-18) = 0 (f) (-12) × (-11) × (10) = (12 × 11 × 10) = 1320 (g) $9 \times (-3) \times (-6) = (9 \times 3 \times 6) = 162$ (h) (-18) × (-5) × (-4) = -18 × (5 × 4) = -18 × 20 = -360 (i) (-1) × (-2) × (-3) × 4 = -(1 × 2 × 3) × 4 = -24 (j) (-3) × (-6) × (-2) × (-1) = (3 × 6 × 2 × 1) = 36 Q. 2. Verify the following : (a) $18 \times [7 + (-3)] = 118 \times 7] + [18 \times (-3)]$ (b) (-21) × [(-4) + (-6)] = [(-21) × (-4)] + [(-21) × (-6)] Solution : (a) LHS = 18 × [7 + (-3]] = 18 × 4 = 72 RHS [18 × 7] + [18 × (-3)] = 126 + (-54) = 126 - 54 = 72 ∴ LHS = RHS Hence verified. (b) LHS = (-21) × [(-4) + (-6)] = -21 × (-10) = 210 RHS = [(-21) × (-4)] + [(-21 × -6)] = 84 + 126 = 210 ∴ LHS = RHS Hence verified. (c) LHS = RHS Hence verified. (d) -22 (b) 37 (c) 0 Solution : (i) -1 × a = -(1 × a) = -a, where a is an integer. (ii) 0c) 22 (b) 37 (c) 0			$= 10 \times [6 + 2]$			= 60 - (-20)	
∴ 10 × [6 - (-2)] = 10 × 6 - 10(-2) (ii) LHS = (-15) × [(-7) - (-1)] RHS = (-15) × (-7) - (-15) × (-1) = (-15) × (-7 + 1) = 105 - (15) = (-15) × - 6 = 90 = 90 ∴ (-15) × [(-7) - (-1)] = [(-15) × (-7)] - [(-15) × (-1)] EXERCISE 1.2 Q. 1. Find each of the following products: (a) 3 × (-1) (b) (-1) × 225 (c) (-21) × (-30) (d) (-316) × (-1) (e) (-15) × 0 × (-18) (f) (-12) × (-11) × (10) (g) 9 × (-3) × (-6) (h) (-18) × (-5) × (-4) (i) (-1) × (-2) × (-3) × 4 (j) (-3) × (-6) × (-2) × (-1) Solution : (a) 3 × (-1) = -(3 × 1) = -3 (b) (-1) × 225 = -(1 × 225) = -225 (c) (-21) × (-30) = +(21 × 30) = 630 (d) (-316) × (-1) = +(316 × 1) = 316 (e) (-15) × 0 × (-18) = 0 (f) (-12) × (-11) × (10) = (12 × 11 × 10) = 1320 (g) 9 × (-3) × (-6) = (9 × 3 × 6) = 162 (h) (-18) × (-5) × (-4) = -18 × (5 × 4) = -18 × 20 = -360 (i) (-1) × (-2) × (-3) × 4 = -(1 × 2 × 3) × 4 = -24 (j) (-3) × (-6) × (-2) × (-1) = (3 × 6 × 2 × 1) = 36 Q. 2. Verify the following: (a) 18 × [7 + (-3)] = [18 × 7] + [18 × (-3)] (b) (-21) × [(-4) + (-6)] = [(-21) × (-4)] + [(-21) × (-6)] Solution : (a) LHS = 18 × [7 + (-3)] = 18 × 4 = 72 RHS = [18 × 7] + [18 × (-3)] = 126 + (-54) = 126 - 54 = 72 ∴ LHS = RHS Hence verified. (b) LHS = (-21) × [(-4) + (-6)] = -21 × (-10) = 210 RHS = [-21) × [(-4) + (-6)] = -21 × (-10) = 210 RHS = [-21) × (-4) + (-6)] = 84 + 126 = 210 ∴ LHS = RHS Hence verified. (b) LHS = (-21) × [(-4) + (-6)] = 84 + 126 = 210 ∴ LHS = RHS Hence verified. (c) LHS = (-21) × [(-4) + (-6)] = 84 + 126 = 210 ∴ LHS = RHS Hence verified. (c) 0 Solution : (i) - 1 × a = -(1 × a) = -a, where a is an integer. (ii) 0 c) 22 (b) 37 (c) 0			$= 10 \times 8 = 80$			= 60 + 20 = 80	
	· 10 × [6	(9)]	$-10 \times 6 10($	2)			
(1) LHS = $(-15) \times ((-7+1)]$ RHS = $(-15) \times (-7) - (-13) \times (-1)$ = $(-15) \times (-7+1)$ = $105 - (15)$ = $(-15) \times [(-7) - (-1)] = [(-15) \times (-7)] - [(-15) \times (-1)]$ EXERCISE 1.2 (a) $3 \times (-1)$ (b) $(-1) \times 225$ (c) $(-21) \times (-30)$ (d) $(-316) \times (-1)$ (e) $(-15) \times (-7) - [(-15) \times (-1)]$ (i) $(-136) \times (-1)$ (e) $(-15) \times (-2) \times (-4)$ (i) $(-1) \times (-2) \times (-3) \times 4$ (j) $(-3) \times (-6) \times (-2) \times (-1)$ Solution : (a) $3 \times (-1) = -(3 \times 1) = -3$ (b) $(-1) \times 225 = -(1 \times 225) = -225$ (c) $(-21) \times (-30) = +(21 \times 30) = 630$ (d) $(-316) \times (-1) = +(316 \times 1) = 316$ (e) $(-15) \times 0 \times (-18) = 0$ (f) $(-12) \times (-11) \times (10) = (12 \times 11 \times 10) = 1320$ (g) $9 \times (-3) \times (-6) = (9 \times 3 \times 6) = 162$ (h) $(-18) \times (-5) \times (-4) = -18 \times (5 \times 4) = -18 \times 20 = -360$ (i) $(-1) \times (-2) \times (-3) \times 4 = -(1 \times 2 \times 3) \times 4 = -24$ (j) $(-3) \times (-6) \times (-2) \times (-1) = (3 \times 6 \times 2 \times 1) = 36$ Q. 2. Verify the following: (a) $18 \times [7 + (-3)] = [18 \times 7] + [18 \times (-3)]$ (b) $(-21) \times [(-4) + (-6)] = [(-21) \times (-4)] + [(-21) \times (-6)]$ Solution : (a) $LHS = 18 \times [7 + (-3)] = 126 + (-54) = 126 - 54 = 72$ $RHS = [18 \times 7] + [18 \times (-3)] = 126 + (-54) = 126 - 54 = 72$ $RHS = [18 \times 7] + [18 \times (-3)] = 126 + (-54) = 126 - 54 = 72$ $RHS = [18 \times 7] + (10) = 210$ $RHS = [(-21) \times (-4)] + [(-21 \times -6)]$ = 84 + 126 = 210 \therefore LHS = RHS Hence verified. (b) LHS = (-21) \times (-4) + [(-21 \times -6)] = 84 + 126 = 210 \therefore LHS = RHS Hence verified. (c) O Solution : (i) $-1 \times a = -(1 \times a) = -a$, where <i>a</i> is an integer. (ii) $20 - 22$ (b) 37 (c) 0	10 ~ [0 ·		$= 10 \times 0 = 10(= 2)$	(1)]	DIIG		1)
$= (-15) \times (-7 + 1) = 105 - (15) \\ = (-15) \times -6 = 90 = 90 \\ \therefore (-15) \times [(-7) - (-1)] = [(-15) \times (-7)] - [(-15) \times (-1)] \\ EXERCISE 1.2 \\ Q. 1. Find each of the following products : (a) 3 \times (-1) (b) (-1) \times 225 (c) (-21) \times (-30)(d) (-316) \times (-1) (e) (-15) \times 0 \times (-18) (f) (-12) \times (-11) \times (10)(g) 9 \times (-3) \times (-6) (h) (-18) \times (-5) \times (-4)(i) (-1) \times (-2) \times (-3) \times 4 (j) (-3) \times (-6) \times (-2) \times (-1)Solution : (a) 3 \times (-1) = -(3 \times 1) = -3(b) (-1) \times 225 = -(1 \times 225) = -225(c) (-21) \times (-3) = 4 + (21 \times 30) = 630(d) (-316) \times (-18) = 0(f) (-12) \times (-11) \times (10) = (12 \times 11 \times 10) = 1320(g) 9 \times (-3) \times (-6) = (9 \times 3 \times 6) = 162(h) (-18) \times (-5) \times (-4) = -18 \times (5 \times 4) = -18 \times 20 = -360(i) (-1) \times (-2) \times (-3) \times 4 = -(1 \times 2 \times 3) \times 4 = -24(j) (-3) \times (-6) \times (-2) \times (-1) = (3 \times 6 \times 2 \times 1) = 36Q. 2. Verify the following :(a) 18 \times [7 + (-3)] = [18 \times 7] + [18 \times (-3)](b) (-21) \times [(-4)] + [(-21) \times (-6)]Solution : (a) LHS = 18 \times [7 + (-3)] = 18 \times 4 = 72$ RHS = $[18 \times 7] + [18 \times (-3)] = 126 + (-54) = 126 - 54 = 72$ \therefore LHS = RHS Hence verified. (b) LHS = $(-21) \times [(-4)] + [(-21) \times -6)]$ $= 21 \times (-10) = 210$ RHS = $[(-21) \times (-4)] + [(-21 \times -6)]$ = 84 + 126 = 210 \therefore LHS = RHS Hence verified. (c) LHS = $(-21) \times (-4) + (-6)]$ $= -21 \times (-10) = 210$ RHS = $[(-21) \times (-4)] + [(-21 \times -6)]$ = 84 + 126 = 210 \therefore LHS = RHS Hence verified. (c) O Solution : (i) -1 $\times a = -(1 \times a) = -a$, where a is an integer. (ii) Oce 20 + (i) -1 $\times a = -(1 \times a) = -a$, where a is an integer.	(11)	LUQ	$= (-15) \times [(-7)]$	- (- 1)]	ппэ	$= (-15) \times (-7) - (-15) \times (-105) \times (-105)$	L)
$= (-15) \times -6 = 90 = 90$ ∴ (-15) × ((-7) - (-1)] = [(-15) × (-7)] - [(-15) × (-1)] EXERCISE 1.2 9. 1. Find each of the following products : (a) 3 × (-1) (b) (-1) × 225 (c) (-21) × (-30) (d) (-316) × (-1) (e) (-(15) × 0 × (-18) (f) (-12) × (-11) × (10) (g) 9 × (-3) × (-6) (h) (-18) × (-5) × (-4) (i) (-1) × (-2) × (-3) × 4 (j) (-3) × (-6) × (-2) × (-1) Solution : (a) 3 × (-1) = -(3 × 1) = -3 (b) (-1) × 225 = -(1 × 225) = -225 (c) (-21) × (-30) = +(21 × 30) = 630 (d) (-316) × (-1) = +(316 × 1) = 316 (e) (-15) × 0 × (-18) = 0 (f) (-12) × (-11) × (10) = (12 × 11 × 10) = 1320 (g) 9 × (-3) × (-6) = (9 × 3 × 6) = 162 (h) (-18) × (-5) × (-4) = -18 × (5 × 4) = -18 × 20 = -360 (i) (-1) × (-2) × (-3) × 4 = -(1 × 2 × 3) × 4 = -24 (j) (-3) × (-6) × (-2) × (-1) = (3 × 6 × 2 × 1) = 36 9. 2. Verify the following: (a) 18 × [7 + (-3]] = [18 × 7] + [18 × (-3)] (b) (-21) × [(-4) + (-6)] = [(-21) × (-4)] + [(-21) × (-6)] Solution : (a) LHS = 18 × [7 + (-3)] = 126 + (-54) = 126 - 54 = 72 ∴ LHS = RHS Hence verified. (b) LHS = (-21) × [(-4) + (-6)] = -21 × (-10) = 210 RHS = [(-21) × (-4)] + [(-21 × -6)] = 84 + 126 = 210 ∴ LHS = RHS 4. Hence verified. (c) LHS = [(-21) × (-4)] + [(-21 × -6)] = 84 + 126 = 210 ∴ LHS = RHS 4. 126 = 210 ∴ LHS = RHS 5. Hence verified. (c) MHS = [(-21) × (-4)] + [(-21 × -6)] = -21 × (-10) = -21 × (-2) = -21 × (-2) × (-3) = -2 × (-10) × (-3) = -2 × (-10) × (-3) = -2 × (-10) × (-3) = -2 × (-10) × (-3) = -2 × (-10) × (-3) = -2 × (-10) × (-3) = -2 × (-10) × (-3) = -2 × (-10) × (-3) = -2 × (-10) × (-3) = -2 × (-10) × (-3) = -2 × (-10) × (-3) = -2 × (-10) × (-3) = -2 × (-10) × (-3) = -2 × (-10) × (-3) = -2 × (-10) × (-3)			$= (-15) \times (-7 + 15)$	1)		= 105 - (15)	
$\therefore (-15) \times [(-7) - (-1)] = [(-15) \times (-7)] - [(-15) \times (-1)]$ EXERCISE 1.2 Q. 1. Find each of the following products: (a) $3 \times (-1)$ (b) $(-1) \times 225$ (c) $(-21) \times (-30)$ (d) $(-316) \times (-1)$ (e) $(-15) \times 0 \times (-18)$ (f) $(-12) \times (-11) \times (10)$ (g) $9 \times (-3) \times (-6)$ (h) $(-18) \times (-5) \times (-4)$ (i) $(-1) \times (-2) \times (-3) \times 4$ (j) $(-3) \times (-6) \times (-2) \times (-1)$ Solution: (a) $3 \times (-1) = -(3 \times 1) = -3$ (b) $(-1) \times 225 = -(1 \times 225) = -225$ (c) $(-21) \times (-30) = +(21 \times 30) = 630$ (d) $(-316) \times (-1) = +(316 \times 1) = 316$ (e) $(-15) \times 0 \times (-18) = 0$ (f) $(-12) \times (-11) \times (10) = (12 \times 11 \times 10) = 1320$ (g) $9 \times (-3) \times (-6) = (9 \times 3 \times 6) = 162$ (h) $(-18) \times (-5) \times (-4) = -18 \times (5 \times 4) = -18 \times 20 = -360$ (i) $(-1) \times (-2) \times (-3) \times 4 = -(1 \times 2 \times 3) \times 4 = -24$ (j) $(-3) \times (-6) \times (-2) \times (-1) = (3 \times 6 \times 2 \times 1) = 36$ Q. 2. Verify the following: (a) $18 \times [7 + (-3)] = [18 \times 7] + [18 \times (-3)]$ (b) $(-21) \times [(-4) + (-6)] = [(-21) \times (-4)] + [(-21) \times (-6)]$ Solution: (a) LHS = 18 \times [7 + (-3)] = 18 \times 4 = 72 RHS = $[18 \times 7] + [18 \times (-3)] = 126 + (-54) = 126 - 54 = 72$ \therefore LHS = RHS Hence verified. (b) LHS = $(-21) \times [(-4) + (-6)] = -21 \times (-10) = 210$ RHS = $[(-21) \times (-4)] + [(-21 \times -6)] = 84 + 126 = 210$ \therefore LHS = RHS Hence verified. Q. 3. (i) For any integer a, what is $(-1) \times a$ equal to? (ii) Determine the integer whose product with (-1) is: (a) -22 (b) 37 (c) 0 Solution: (i) $-1 \times a = -(1 \times a) = -a$, where a is an integer.			$=(-15) \times -6 =$	90		= 90	
$\begin{array}{c} \textbf{EXERCISE 1.2} \\ \textbf{Q. 1. Find each of the following products:} \\ (a) 3 \times (-1) \\ (b) (-1) \times 225 \\ (c) (-21) \times (-30) \\ (d) (-316) \times (-1) \\ (e) (-15) \times 0 \times (-18) \\ (f) (-12) \times (-11) \times (10) \\ (g) 9 \times (-3) \times (-6) \\ (h) (-18) \times (-5) \times (-4) \\ (i) (-1) \times (-2) \times (-3) \times 4 \\ (j) (-3) \times (-6) \times (-2) \times (-1) \\ \textbf{Solution:} \\ (a) 3 \times (-1) = - (3 \times 1) = -3 \\ (b) (-1) \times 225 = -(1 \times 225) = -225 \\ (c) (-21) \times (-30) = + (21 \times 30) = 630 \\ (d) (-316) \times (-1) = + (316 \times 1) = 316 \\ (e) (-15) \times 0 \times (-18) = 0 \\ (f) (-12) \times (-11) \times (10) = (12 \times 11 \times 10) = 1320 \\ (g) 9 \times (-3) \times (-6) = (9 \times 3 \times 6) = 162 \\ (h) (-18) \times (-5) \times (-4) = -18 \times (5 \times 4) = -18 \times 20 = -360 \\ (i) (-1) \times (-2) \times (-3) \times 4 = -(1 \times 2 \times 3) \times 4 = -24 \\ (j) (-3) \times (-6) \times (-2) \times (-1) = (3 \times 6 \times 2 \times 1) = 36 \\ \textbf{Q. 2. Verify the following:} \\ (a) 18 \times [7 + (-3)] = [18 \times 7] + [18 \times (-3)] \\ (b) (-21) \times [(-4) + (-6)] = [(-21) \times (-4)] + [(-21) \times (-6)] \\ \textbf{Solution:} (a) LHS = 18 \times [7 + (-3)] = 18 \times 4 = 72 \\ RHS = [18 \times 7] + [18 \times (-3)] = 126 + (-54) = 126 - 54 = 72 \\ \therefore LHS = RHS \\ \textbf{Hence verified.} \\ (b) LHS = (-21) \times [(-4) + (-6)] \\ = -21 \times (-10) = 210 \\ RHS = [(-21) \times (-4)] + [(-21 \times -6)] \\ = 84 + 126 = 210 \\ \therefore LHS = RHS \\ \textbf{Hence verified.} \\ \textbf{Q. 3. (i) For any integer a, what is (-1) \times a equal to? \\ (ii) Determine the integer whose product with (-1) is : \\ (a) -22 \\ (b) 37 \\ (c) 0 \\ \textbf{Solution:} (i) - 1 \times a = -(1 \times a) = -a, where a is an integer. \\ (ii) (a) 22 \\ (b) 37 \\ (c) 0 \\ \textbf{Solution:} \end{cases}$	∴ (– 15) × [(-7)-((-1)] = [(-15) × (– 7)] – [(– 15	5) × (–	1)]	
Q. 1. Find each of the following products : (a) 3 × (-1) (b) (-1) × 225 (c) (-21) × (-30) (d) (-316) × (-1) (e) (-15) × 0 × (-18) (f) (-12) × (-11) × (10) (g) 9 × (-3) × (-6) (h) (-18) × (-5) × (-4) (i) (-1) × (-2) × (-3) × 4 (j) (-3) × (-6) × (-2) × (-1) Solution : (a) 3 × (-1) = - (3 × 1) = -3 (b) (-1) × 225 = - (1 × 225) = - 225 (c) (-21) × (-30) = + (21 × 30) = 630 (d) (-316) × (-1) = + (316 × 1) = 316 (e) (-15) × 0 × (-18) = 0 (f) (-12) × (-11) × (10) = (12 × 11 × 10) = 1320 (g) 9 × (-3) × (-6) = (9 × 3 × 6) = 162 (h) (-18) × (-5) × (-4) = -18 × (5 × 4) = -18 × 20 = -360 (i) (-1) × (-2) × (-3) × 4 = -(1 × 2 × 3) × 4 = -24 (j) (-3) × (-6) × (-2) × (-1) = (3 × 6 × 2 × 1) = 36 Q. 2. Verify the following : (a) 18 × [7 + (-3)] = [18 × 7] + [18 × (-3)] (b) (-21) × [(-4) + (-6)] = [(-21) × (-4)] + [(-21) × (-6)] Solution : (a) LHS = 18 × [7 + (-3)] = 126 + (-54) = 126 - 54 = 72 ∴ LHS = RHS HS Hence verified. (b) LHS = (-21) × [(-4) + (-6)] = -21 × (-10) = 210 RHS = [(-21) × (-4)] + [(-21 × -6)] = 84 + 126 = 210 ∴ LHS = RHS Hence verified. Q. 3. (i) For any integer <i>a</i> , what is (-1) × <i>a</i> equal to? (ii) Determine the integer whose product with (-1) is : (a) -22 (b) 37 (c) 0 Solution : (i) -1 × a = -(1 × a) = -a, where a is an integer. (ii) (a) 22 (b) 37 (c) 0			EXER	RCISE 1	.2		
(a) $3 \times (-1)$ (b) $(-1) \times 225$ (c) $(-21) \times (-30)$ (d) $(-316) \times (-1)$ (e) $(-15) \times 0 \times (-18)$ (f) $(-12) \times (-11) \times (10)$ (g) $9 \times (-3) \times (-6)$ (h) $(-18) \times (-5) \times (-4)$ (i) $(-1) \times (-2) \times (-3) \times 4$ (j) $(-3) \times (-6) \times (-2) \times (-1)$ Solution : (a) $3 \times (-1) = -(3 \times 1) = -3$ (b) $(-1) \times 225 = -(1 \times 225) = -225$ (c) $(-21) \times (-30) = +(21 \times 30) = 630$ (d) $(-316) \times (-1) = +(316 \times 1) = 316$ (e) $(-15) \times 0 \times (-18) = 0$ (f) $(-12) \times (-11) \times (10) = (12 \times 11 \times 10) = 1320$ (g) $9 \times (-3) \times (-6) = (9 \times 3 \times 6) = 162$ (h) $(-18) \times (-5) \times (-4) = -18 \times (5 \times 4) = -18 \times 20 = -360$ (i) $(-1) \times (-2) \times (-3) \times 4 = -(1 \times 2 \times 3) \times 4 = -24$ (j) $(-3) \times (-6) \times (-2) \times (-1) = (3 \times 6 \times 2 \times 1) = 36$ Q. 2. Verify the following: (a) $18 \times [7 + (-3)] = [18 \times 7] + [18 \times (-3)]$ (b) $(-21) \times [(-4) + (-6)] = [(-21) \times (-4)] + [(-21) \times (-6)]$ Solution : (a) LHS = $18 \times [7 + (-3)] = 126 + (-54) = 126 - 54 = 72$ \therefore LHS = RHS HS Hence verified. (b) LHS = $(-21) \times [(-4) + (-6)] = -21 \times (-10) = 210$ $RHS = [(-21) \times (-4)] + [(-21 \times -6)] = -21 \times (-10) = 210$ $RHS = [(-21) \times (-4)] + [(-21 \times -6)] = -21 \times (-10) = 210$ $RHS = [-21) \times (-4)] + [(-21 \times -6)] = -21 \times (-10) = 210$ $RHS = [-21) \times (-4) = 210$ RHS = [RHS Hence verified. Q. 3. (i) For any integer <i>a</i> , what is $(-1) \times a$ equal to? (ii) Determine the integer whose product with (-1) is : (a) -22 (b) 37 (c) 0 Solution : (i) $-1 \times a = -(1 \times a) = -a$, where <i>a</i> is an integer. (iii) $(2) = 2$ (b) -37 (c) 0	Q. 1. Find e	each of	the following	products :			
(d) (-316) × (-1) (e) (-15) × 0 × (-18) (f) (-12) × (-11) × (10) (g) 9 × (-3) × (-6) (h) (-18) × (-5) × (-4) (i) (-1) × (-2) × (-3) × 4 (j) (-3) × (-6) × (-2) × (-1) Solution : (a) 3 × (-1) = -(3 × 1) = -3 (b) (-1) × 225 = -(1 × 225) = -225 (c) (-21) × (-30) = + (21 × 30) = 630 (d) (-316) × (-1) = + (316 × 1) = 316 (e) (-15) × 0 × (-18) = 0 (f) (-12) × (-11) × (10) = (12 × 11 × 10) = 1320 (g) 9 × (-3) × (-6) = (9 × 3 × 6) = 162 (h) (-18) × (-5) × (-4) = -18 × (5 × 4) = -18 × 20 = -360 (i) (-1) × (-2) × (-3) × 4 = -(1 × 2 × 3) × 4 = -24 (j) (-3) × (-6) × (-2) × (-1) = (3 × 6 × 2 × 1) = 36 Q. 2. Verify the following: (a) 18 × [7 + (-3]] = [18 × 7] + [18 × (-3)] (b) (-21) × [(-4) + (-6)] = [(-21) × (-4)] + [(-21) × (-6)] Solution : (a) LHS = 18 × [7 + (-3)] = 18 × 4 = 72 RHS = [18 × 7] + [18 × (-3)] = 126 + (-54) = 126 - 54 = 72 ∴ LHS = RHS Hence verified. (b) LHS = (-21) × [(-4) + (-6)] = -21 × (-10) = 210 RHS = [(-21) × (-4)] + [(-21 × -6)] = 84 + 126 = 210 ∴ LHS = RHS Hence verified. Q. 3. (i) For any integer a, what is (-1) × a equal to? (ii) Determine the integer whose product with (-1) is: (a) -22 (b) 37 (c) 0 Solution : (i) - 1 × a = -(1 × a) = -a, where a is an integer. (ii) (2) 22 (b) -37 (c) 0	(a) $3 \times (-1)$		(b) (-	$1) \times 225$		(c) $(-21) \times (-30)$	
(g) 9 × (-3) × (-6) (h) (-18) × (-5) × (-4) (i) (-1) × (-2) × (-3) × 4 (j) (-3) × (-6) × (-2) × (-1) Solution : (a) $3 × (-1) = -(3 × 1) = -3$ (b) (-1) × 225 = -(1 × 225) = -225 (c) (-21) × (-30) = + (21 × 30) = 630 (d) (-316) × (-1) = + (316 × 1) = 316 (e) (-15) × 0 × (-18) = 0 (f) (-12) × (-11) × (10) = (12 × 11 × 10) = 1320 (g) 9 × (-3) × (-6) = (9 × 3 × 6) = 162 (h) (-18) × (-5) × (-4) = -18 × (5 × 4) = -18 × 20 = -360 (i) (-1) × (-2) × (-3) × 4 = -(1 × 2 × 3) × 4 = -24 (j) (-3) × (-6) × (-2) × (-1) = (3 × 6 × 2 × 1) = 36 Q. 2. Verify the following : (a) 18 × [7 + (-3)] = [18 × 7] + [18 × (-3)] (b) (-21) × [(-4) + (-6)] = [(-21) × (-4)] + [(-21) × (-6)] Solution : (a) LHS = 18 × [7 + (-3)] = 18 × 4 = 72 RHS = [18 × 7] + [18 × (-3)] = 126 + (-54) = 126 - 54 = 72 ∴ LHS = RHS HS Hence verified. (b) LHS = (-21) × [(-4) + (-6)] = -21 × (-10) = 210 RHS = [(-21) × (-4)] + [(-21 × -6)] = 84 + 126 = 210 ∴ LHS = RHS Hence verified. (c) 0 Solution : (i) For any integer a, what is (-1) × a equal to? (ii) Determine the integer whose product with (-1) is : (a) -22 (b) 37 (c) 0 Solution : (i) -1 × a = -(1 × a) = -a, where a is an integer. (ii) (22 (b) - 37 (c) 0)	(d) (- 316) >	< (- 1)	(e) (- 1	$15) \times 0 \times (-1)$	18)	(f) $(-12) \times (-11) \times (10)$	
(i) $(-1) \times (-2) \times (-3) \times 4$ (j) $(-3) \times (-6) \times (-2) \times (-1)$ Solution : (a) $3 \times (-1) = -(3 \times 1) = -3$ (b) $(-1) \times 225 = -(1 \times 225) = -225$ (c) $(-21) \times (-30) = +(21 \times 30) = 630$ (d) $(-316) \times (-1) = +(316 \times 1) = 316$ (e) $(-15) \times 0 \times (-18) = 0$ (f) $(-12) \times (-11) \times (10) = (12 \times 11 \times 10) = 1320$ (g) $9 \times (-3) \times (-6) = (9 \times 3 \times 6) = 162$ (h) $(-18) \times (-5) \times (-4) = -18 \times (5 \times 4) = -18 \times 20 = -360$ (i) $(-1) \times (-2) \times (-3) \times 4 = -(1 \times 2 \times 3) \times 4 = -24$ (j) $(-3) \times (-6) \times (-2) \times (-1) = (3 \times 6 \times 2 \times 1) = 36$ Q. 2. Verify the following : (a) $18 \times [7 + (-3)] = [18 \times 7] + [18 \times (-3)]$ (b) $(-21) \times [(-4) + (-6)] = [(-21) \times (-4)] + [(-21) \times (-6)]$ Solution : (a) LHS = $18 \times [7 + (-3)] = 126 + (-54) = 126 - 54 = 72$ \therefore LHS = RHS Hence verified. (b) LHS = $(-21) \times (-4)] + [(-21 \times -6)]$ $= -21 \times (-10) = 210$ $RHS = [(-21) \times (-4)] + [(-21 \times -6)]$ = 84 + 126 = 210 \therefore LHS = RHS Hence verified. Q. 3. (i) For any integer a, what is $(-1) \times a$ equal to? (ii) Determine the integer whose product with (-1) is : (a) -22 (b) 37 (c) 0 Solution : (i) $-1 \times a = -(1 \times a) = -a$, where a is an integer. (iii) $(2) 22$ (b) -37 (c) 0	(g) $9 \times (-3)$	× (- 6)	(h) (–	$18) \times (-5) \times$	(-4)		
Solution : (a) $3 \times (-1) = -(3 \times 1) = -3$ (b) $(-1) \times 225 = -(1 \times 225) = -225$ (c) $(-21) \times (-30) = +(21 \times 30) = 630$ (d) $(-316) \times (-1) = +(316 \times 1) = 316$ (e) $(-15) \times 0 \times (-18) = 0$ (f) $(-12) \times (-11) \times (10) = (12 \times 11 \times 10) = 1320$ (g) $9 \times (-3) \times (-6) = (9 \times 3 \times 6) = 162$ (h) $(-18) \times (-5) \times (-4) = -18 \times (5 \times 4) = -18 \times 20 = -360$ (i) $(-1) \times (-2) \times (-3) \times 4 = -(1 \times 2 \times 3) \times 4 = -24$ (j) $(-3) \times (-6) \times (-2) \times (-1) = (3 \times 6 \times 2 \times 1) = 36$ Q. 2. Verify the following : (a) $18 \times [7 + (-3)] = [18 \times 7] + [18 \times (-3)]$ (b) $(-21) \times [(-4) + (-6)] = [(-21) \times (-4)] + [(-21) \times (-6)]$ Solution : (a) LHS = $18 \times [7 + (-3)] = 18 \times 4 = 72$ RHS = $[18 \times 7] + [18 \times (-3)] = 126 + (-54) = 126 - 54 = 72$ ∴ LHS = RHS HS Hence verified. (b) LHS = $(-21) \times [(-4) + (-6)]$ $= -21 \times (-10) = 210$ RHS = $[(-21) \times (-4)] + [(-21 \times -6)]$ = 84 + 126 = 210 ∴ LHS = RHS Hence verified. Q. 3. (i) For any integer a, what is $(-1) \times a$ equal to? (ii) Determine the integer whose product with (-1) is : (a) -22 (b) 37 (c) 0 Solution : (i) $-1 \times a = -(1 \times a) = -a$, where a is an integer. (iii) (a) 22 (b) -37 (c) 0	(i) (-1) × (-	2) × (-	$(-3) \times 4$ (j) (-3)	$\mathbf{B}) \times (-6) \times (-6)$	- 2) ×	(-1)	
(b) $(-1) \times 225 = -(1 \times 225) = -225$ (c) $(-21) \times (-30) = +(21 \times 30) = 630$ (d) $(-316) \times (-1) = +(316 \times 1) = 316$ (e) $(-15) \times 0 \times (-18) = 0$ (f) $(-12) \times (-11) \times (10) = (12 \times 11 \times 10) = 1320$ (g) $9 \times (-3) \times (-6) = (9 \times 3 \times 6) = 162$ (h) $(-18) \times (-5) \times (-4) = -18 \times (5 \times 4) = -18 \times 20 = -360$ (i) $(-1) \times (-2) \times (-3) \times 4 = -(1 \times 2 \times 3) \times 4 = -24$ (j) $(-3) \times (-6) \times (-2) \times (-1) = (3 \times 6 \times 2 \times 1) = 36$ Q. 2. Verify the following: (a) $18 \times [7 + (-3)] = [18 \times 7] + [18 \times (-3)]$ (b) $(-21) \times [(-4) + (-6)] = [(-21) \times (-4)] + [(-21) \times (-6)]$ Solution: (a) LHS = $18 \times [7 + (-3)] = 18 \times 4 = 72$ RHS = $[18 \times 7] + [18 \times (-3)] = 126 + (-54) = 126 - 54 = 72$ \therefore LHS = RHS Hence verified. (b) LHS = $(-21) \times [(-4) + (-6)]$ $= -21 \times (-10) = 210$ RHS = $[(-21) \times (-4)] + [(-21 \times -6)]$ = 84 + 126 = 210 \therefore LHS = RHS Hence verified. Q. 3. (i) For any integer a, what is $(-1) \times a$ equal to? (ii) Determine the integer whose product with (-1) is : (a) -22 (b) 37 (c) 0 Solution : (i) $-1 \times a = -(1 \times a) = -a$, where a is an integer. (iii) $(2) 22$ (b) -37	Solution :	(a) 3	$\times (-1) = -(3 \times 1)$) = - 3			
(c) $(-21) \times (-30) = + (21 \times 30) = 630$ (d) $(-316) \times (-1) = + (316 \times 1) = 316$ (e) $(-15) \times 0 \times (-18) = 0$ (f) $(-12) \times (-11) \times (10) = (12 \times 11 \times 10) = 1320$ (g) $9 \times (-3) \times (-6) = (9 \times 3 \times 6) = 162$ (h) $(-18) \times (-5) \times (-4) = -18 \times (5 \times 4) = -18 \times 20 = -360$ (i) $(-1) \times (-2) \times (-3) \times 4 = -(1 \times 2 \times 3) \times 4 = -24$ (j) $(-3) \times (-6) \times (-2) \times (-1) = (3 \times 6 \times 2 \times 1) = 36$ Q. 2. Verify the following: (a) $18 \times [7 + (-3)] = [18 \times 7] + [18 \times (-3)]$ (b) $(-21) \times [(-4) + (-6)] = [(-21) \times (-4)] + [(-21) \times (-6)]$ Solution: (a) LHS = $18 \times [7 + (-3)] = 18 \times 4 = 72$ RHS = $[18 \times 7] + [18 \times (-3)] = 126 + (-54) = 126 - 54 = 72$ \therefore LHS = RHS Hence verified. (b) LHS = $(-21) \times [(-4) + (-6)]$ $= -21 \times (-10) = 210$ RHS = $[(-21) \times (-4)] + [(-21 \times -6)]$ = 84 + 126 = 210 \therefore LHS = RHS Hence verified. Q. 3. (i) For any integer a, what is $(-1) \times a$ equal to? (ii) Determine the integer whose product with (-1) is : (a) -22 (b) 37 (c) 0 Solution : (i) $-1 \times a = -(1 \times a) = -a$, where a is an integer. (iii) $(a) 22$ (b) -377 (c) 0		(b) (–	$(1) \times 225 = -(1 \times 10^{-1}) \times 10^{-1}$	(225) = -22	5		
(d) $(-316) \times (-1) = + (316 \times 1) = 316$ (e) $(-15) \times 0 \times (-18) = 0$ (f) $(-12) \times (-11) \times (10) = (12 \times 11 \times 10) = 1320$ (g) $9 \times (-3) \times (-6) = (9 \times 3 \times 6) = 162$ (h) $(-18) \times (-5) \times (-4) = -18 \times (5 \times 4) = -18 \times 20 = -360$ (i) $(-1) \times (-2) \times (-3) \times 4 = -(1 \times 2 \times 3) \times 4 = -24$ (j) $(-3) \times (-6) \times (-2) \times (-1) = (3 \times 6 \times 2 \times 1) = 36$ Q. 2. Verify the following: (a) $18 \times [7 + (-3)] = [18 \times 7] + [18 \times (-3)]$ (b) $(-21) \times [(-4) + (-6)] = [(-21) \times (-4)] + [(-21) \times (-6)]$ Solution: (a) LHS = $18 \times [7 + (-3)] = 18 \times 4 = 72$ RHS = $[18 \times 7] + [18 \times (-3)] = 126 + (-54) = 126 - 54 = 72$ \therefore LHS = RHS Hence verified. (b) LHS = $(-21) \times [(-4) + (-6)]$ $= -21 \times (-10) = 210$ RHS = $[(-21) \times (-4)] + [(-21 \times -6)]$ = 84 + 126 = 210 \therefore LHS = RHS Hence verified. Q. 3. (i) For any integer <i>a</i> , what is $(-1) \times a$ equal to? (ii) Determine the integer whose product with (-1) is : (a) -22 (b) 37 (c) 0 Solution : (i) $-1 \times a = -(1 \times a) = -a$, where <i>a</i> is an integer. (iii) $(a) 22$ (b) -37 (c) 0		(c) (-	$(-21) \times (-30) = +$	$(21 \times 30) = 6$	630		
(e) $(-15) \times 0 \times (-18) = 0$ (f) $(-12) \times (-11) \times (10) = (12 \times 11 \times 10) = 1320$ (g) $9 \times (-3) \times (-6) = (9 \times 3 \times 6) = 162$ (h) $(-18) \times (-5) \times (-4) = -18 \times (5 \times 4) = -18 \times 20 = -360$ (i) $(-1) \times (-2) \times (-3) \times 4 = -(1 \times 2 \times 3) \times 4 = -24$ (j) $(-3) \times (-6) \times (-2) \times (-1) = (3 \times 6 \times 2 \times 1) = 36$ Q. 2. Verify the following: (a) $18 \times [7 + (-3)] = [18 \times 7] + [18 \times (-3)]$ (b) $(-21) \times [(-4) + (-6)] = [(-21) \times (-4)] + [(-21) \times (-6)]$ Solution: (a) LHS = $18 \times [7 + (-3)] = 18 \times 4 = 72$ RHS = $[18 \times 7] + [18 \times (-3)] = 126 + (-54) = 126 - 54 = 72$ \therefore LHS = RHS (b) LHS = $(-21) \times [(-4) + (-6)]$ $= -21 \times (-10) = 210$ RHS = $[(-21) \times (-4)] + [(-21 \times -6)]$ = 84 + 126 = 210 \therefore LHS = RHS Hence verified. Q. 3. (i) For any integer a, what is $(-1) \times a$ equal to? (ii) Determine the integer whose product with (-1) is : (a) -22 (b) 37 (c) 0 Solution : (i) $-1 \times a = -(1 \times a) = -a$, where a is an integer. (iii) $(a) 22$ (b) -37 (c) 0		(d) (-	$(-316) \times (-1) = +$	$(316 \times 1) = 3$	B16		
(f) $(-12) \times (-11) \times (10) = (12 \times 11 \times 10) = 1320$ (g) $9 \times (-3) \times (-6) = (9 \times 3 \times 6) = 162$ (h) $(-18) \times (-5) \times (-4) = -18 \times (5 \times 4) = -18 \times 20 = -360$ (i) $(-1) \times (-2) \times (-3) \times 4 = -(1 \times 2 \times 3) \times 4 = -24$ (j) $(-3) \times (-6) \times (-2) \times (-1) = (3 \times 6 \times 2 \times 1) = 36$ Q. 2. Verify the following: (a) $18 \times [7 + (-3)] = [18 \times 7] + [18 \times (-3)]$ (b) $(-21) \times [(-4) + (-6)] = [(-21) \times (-4)] + [(-21) \times (-6)]$ Solution: (a) LHS = $18 \times [7 + (-3)] = 18 \times 4 = 72$ RHS = $[18 \times 7] + [18 \times (-3)] = 126 + (-54) = 126 - 54 = 72$ \therefore LHS = RHS (b) LHS = $(-21) \times [(-4) + (-6)]$ $= -21 \times (-10) = 210$ RHS = $[(-21) \times (-4)] + [(-21 \times -6)]$ = 84 + 126 = 210 \therefore LHS = RHS Hence verified. Q. 3. (i) For any integer a, what is $(-1) \times a$ equal to? (ii) Determine the integer whose product with (-1) is: (a) -22 (b) 37 (c) 0 Solution: (i) $-1 \times a = -(1 \times a) = -a$, where a is an integer. (iii) (a) 22 (b) -37		(e) (–	$(15) \times 0 \times (-18)$	= 0			
(g) $9 \times (-3) \times (-6) = (9 \times 3 \times 6) = 162$ (h) $(-18) \times (-5) \times (-4) = -18 \times (5 \times 4) = -18 \times 20 = -360$ (i) $(-1) \times (-2) \times (-3) \times 4 = -(1 \times 2 \times 3) \times 4 = -24$ (j) $(-3) \times (-6) \times (-2) \times (-1) = (3 \times 6 \times 2 \times 1) = 36$ Q. 2. Verify the following: (a) $18 \times [7 + (-3)] = [18 \times 7] + [18 \times (-3)]$ (b) $(-21) \times [(-4) + (-6)] = [(-21) \times (-4)] + [(-21) \times (-6)]$ Solution: (a) LHS = $18 \times [7 + (-3)] = 18 \times 4 = 72$ RHS = $[18 \times 7] + [18 \times (-3)] = 126 + (-54) = 126 - 54 = 72$ \therefore LHS = RHS (b) LHS = $(-21) \times [(-4) + (-6)]$ $= -21 \times (-10) = 210$ RHS = $[(-21) \times (-4)] + [(-21 \times -6)]$ = 84 + 126 = 210 \therefore LHS = RHS Hence verified. Q. 3. (i) For any integer a, what is $(-1) \times a$ equal to? (ii) Determine the integer whose product with (-1) is : (a) -22 (b) 37 (c) 0 Solution : (i) $-1 \times a = -(1 \times a) = -a$, where a is an integer. (ii) $(2) 22$ (b) -37 (c) 0		(f) (–	$(12) \times (-11) \times (1)$	$0) = (12 \times 11)$	L × 10)	0 = 1320	
(h) $(-18) \times (-5) \times (-4) = -18 \times (5 \times 4) = -18 \times 20 = -360$ (i) $(-1) \times (-2) \times (-3) \times 4 = -(1 \times 2 \times 3) \times 4 = -24$ (j) $(-3) \times (-6) \times (-2) \times (-1) = (3 \times 6 \times 2 \times 1) = 36$ Q. 2. Verify the following: (a) $18 \times [7 + (-3)] = [18 \times 7] + [18 \times (-3)]$ (b) $(-21) \times [(-4) + (-6)] = [(-21) \times (-4)] + [(-21) \times (-6)]$ Solution: (a) LHS = $18 \times [7 + (-3)] = 18 \times 4 = 72$ RHS = $[18 \times 7] + [18 \times (-3)] = 126 + (-54) = 126 - 54 = 72$ \therefore LHS = RHS (b) LHS = $(-21) \times [(-4) + (-6)]$ $= -21 \times (-10) = 210$ RHS = $[(-21) \times (-4)] + [(-21 \times -6)]$ = 84 + 126 = 210 \therefore LHS = RHS Hence verified. Q. 3. (i) For any integer <i>a</i> , what is $(-1) \times a$ equal to? (ii) Determine the integer whose product with (-1) is : (a) -22 (b) 37 (c) 0 Solution : (i) $-1 \times a = -(1 \times a) = -a$, where <i>a</i> is an integer. (ii) (a) 22 (b) -37		(g) 9	$\times (-3) \times (-6) = ($	$9 \times 3 \times 6) =$	162		
(i) $(-1) \times (-2) \times (-3) \times 4 = -(1 \times 2 \times 3) \times 4 = -24$ (j) $(-3) \times (-6) \times (-2) \times (-1) = (3 \times 6 \times 2 \times 1) = 36$ Q. 2. Verify the following : (a) $18 \times [7 + (-3)] = [18 \times 7] + [18 \times (-3)]$ (b) $(-21) \times [(-4) + (-6)] = [(-21) \times (-4)] + [(-21) \times (-6)]$ Solution : (a) LHS = $18 \times [7 + (-3)] = 18 \times 4 = 72$ RHS = $[18 \times 7] + [18 \times (-3)] = 126 + (-54) = 126 - 54 = 72$ \therefore LHS = RHS (b) LHS = $(-21) \times [(-4) + (-6)]$ $= -21 \times (-10) = 210$ RHS = $[(-21) \times (-4)] + [(-21 \times -6)]$ = 84 + 126 = 210 \therefore LHS = RHS (i) For any integer <i>a</i> , what is $(-1) \times a$ equal to? (ii) Determine the integer whose product with (-1) is : (a) -22 (b) 37 (c) 0 Solution : (i) $-1 \times a = -(1 \times a) = -a$, where <i>a</i> is an integer. (iii) (a) 22 (b) -37		(h) (–	$(-18) \times (-5) \times (-4)$	$4) = -18 \times (5)$	$5 \times 4) =$	$= -18 \times 20 = -360$	
(j) $(-3) \times (-6) \times (-2) \times (-1) = (3 \times 6 \times 2 \times 1) = 36$ Q. 2. Verify the following: (a) $18 \times [7 + (-3)] = [18 \times 7] + [18 \times (-3)]$ (b) $(-21) \times [(-4) + (-6)] = [(-21) \times (-4)] + [(-21) \times (-6)]$ Solution: (a) LHS = $18 \times [7 + (-3)] = 18 \times 4 = 72$ RHS = $[18 \times 7] + [18 \times (-3)] = 126 + (-54) = 126 - 54 = 72$ \therefore LHS = RHS Hence verified. (b) LHS = $(-21) \times [(-4) + (-6)]$ $= -21 \times (-10) = 210$ RHS = $[(-21) \times (-4)] + [(-21 \times -6)]$ = 84 + 126 = 210 \therefore LHS = RHS Hence verified. Q. 3. (i) For any integer <i>a</i> , what is $(-1) \times a$ equal to? (ii) Determine the integer whose product with (-1) is: (a) -22 (b) 37 (c) 0 Solution: (i) $-1 \times a = -(1 \times a) = -a$, where <i>a</i> is an integer. (ii) (a) 22		(i) $(-1) \times (-2) \times (-3) \times 4 = -(1 \times 2 \times 3) \times 4 = -24$					
Q. 2. Verify the following: (a) $18 \times [7 + (-3)] = [18 \times 7] + [18 \times (-3)]$ (b) $(-21) \times [(-4) + (-6)] = [(-21) \times (-4)] + [(-21) \times (-6)]$ Solution: (a) LHS = $18 \times [7 + (-3)] = 18 \times 4 = 72$ RHS = $[18 \times 7] + [18 \times (-3)] = 126 + (-54) = 126 - 54 = 72$ \therefore LHS = RHS (b) LHS = $(-21) \times [(-4) + (-6)]$ $= -21 \times (-10) = 210$ RHS = $[(-21) \times (-4)] + [(-21 \times -6)]$ = 84 + 126 = 210 \therefore LHS = RHS Q. 3. (i) For any integer <i>a</i> , what is $(-1) \times a$ equal to? (ii) Determine the integer whose product with (-1) is : (a) -22 (b) 37 (c) 0 Solution : (i) $-1 \times a = -(1 \times a) = -a$, where <i>a</i> is an integer. (ii) (a) 22 (b) -37 (c) 0	(j) $(-3) \times (-6) \times (-2) \times (-1) = (3 \times 6 \times 2 \times 1) = 36$						
(a) $18 \times [7 + (-3)] = [18 \times 7] + [18 \times (-3)]$ (b) $(-21) \times [(-4) + (-6)] = [(-21) \times (-4)] + [(-21) \times (-6)]$ Solution: (a) LHS = $18 \times [7 + (-3)] = 18 \times 4 = 72$ RHS = $[18 \times 7] + [18 \times (-3)] = 126 + (-54) = 126 - 54 = 72$ \therefore LHS = RHS (b) LHS = $(-21) \times [(-4) + (-6)]$ $= -21 \times (-10) = 210$ RHS = $[(-21) \times (-4)] + [(-21 \times -6)]$ = 84 + 126 = 210 \therefore LHS = RHS Q. 3. (i) For any integer <i>a</i> , what is $(-1) \times a$ equal to? (ii) Determine the integer whose product with (-1) is : (a) -22 (b) 37 (c) 0 Solution : (i) $-1 \times a = -(1 \times a) = -a$, where <i>a</i> is an integer. (ii) (a) 22 (b) -37 (c) 0	Q. 2. Verify the following :						
(b) $(-21) \times [(-4) + (-6)] = [(-21) \times (-4)] + [(-21) \times (-6)]$ Solution: (a) LHS = $18 \times [7 + (-3)] = 18 \times 4 = 72$ RHS = $[18 \times 7] + [18 \times (-3)] = 126 + (-54) = 126 - 54 = 72$ \therefore LHS = RHS Hence verified. (b) LHS = $(-21) \times [(-4) + (-6)]$ $= -21 \times (-10) = 210$ RHS = $[(-21) \times (-4)] + [(-21 \times -6)]$ = 84 + 126 = 210 \therefore LHS = RHS Hence verified. Q. 3. (i) For any integer <i>a</i> , what is $(-1) \times a$ equal to? (ii) Determine the integer whose product with (-1) is : (a) -22 (b) 37 (c) 0 Solution : (i) $-1 \times a = -(1 \times a) = -a$, where <i>a</i> is an integer. (iii) (a) 22 (b) -37 (c) 0	(a) $18 \times [7 + (-3)] = [18 \times 7] + [18 \times (-3)]$						
Solution: (a) LHS = $18 \times [7 + (-3)] = 18 \times 4 = 72$ RHS = $[18 \times 7] + [18 \times (-3)] = 126 + (-54) = 126 - 54 = 72$ \therefore LHS = RHS Hence verified. (b) LHS = $(-21) \times [(-4) + (-6)]$ $= -21 \times (-10) = 210$ RHS = $[(-21) \times (-4)] + [(-21 \times -6)]$ = 84 + 126 = 210 \therefore LHS = RHS Hence verified. Q. 3. (i) For any integer <i>a</i> , what is (-1) × <i>a</i> equal to? (ii) Determine the integer whose product with (-1) is : (a) - 22 (b) 37 (c) 0 Solution : (i) - 1 × a = -(1 × a) = -a, where <i>a</i> is an integer. (ii) (a) 22 (b) - 37 (c) 0	(b) $(-21) \times [(-4) + (-6)] = [(-21) \times (-4)] + [(-21) \times (-6)]$						
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Solution :	(a) L	$HS = 18 \times [7 + (-10)]$	(-3)] = 18 × 4	f = 72		
$\therefore \qquad \text{LHS} = \text{RHS} \qquad \text{Hence verified.}$ (b) $\text{LHS} = (-21) \times [(-4) + (-6)]$ $= -21 \times (-10) = 210$ $\text{RHS} = [(-21) \times (-4)] + [(-21 \times -6)]$ = 84 + 126 = 210 $\therefore \qquad \text{LHS} = \text{RHS} \qquad \text{Hence verified.}$ (i) For any integer <i>a</i> , what is (-1) × <i>a</i> equal to? (ii) Determine the integer whose product with (-1) is : (a) - 22 (b) 37 (c) 0 Solution : (i) - 1 × a = -(1 × a) = -a, where a is an integer. (ii) (a) 22 (b) - 37 (c) 0		R	$HS = [18 \times 7] + [.5]$	$18 \times (-3) = 1$	126 + ((-54) = 126 - 54 = 72	
(b) LHS = $(-21) \times [(-4) + (-6)]$ = $-21 \times (-10) = 210$ RHS = $[(-21) \times (-4)] + [(-21 \times -6)]$ = $84 + 126 = 210$ \therefore LHS = RHS Hence verified. Q. 3. (i) For any integer <i>a</i> , what is $(-1) \times a$ equal to? (ii) Determine the integer whose product with (-1) is : (a) -22 (b) 37 (c) 0 Solution : (i) $-1 \times a = -(1 \times a) = -a$, where <i>a</i> is an integer. (ii) (a) 22 (b) -37 (c) 0	·		HS = RHS			Hence verifie	d.
$= -21 \times (-10) = 210$ RHS = $[(-21) \times (-4)] + [(-21 \times -6)]$ $= 84 + 126 = 210$ $\therefore LHS = RHS$ Hence verified. (i) For any integer <i>a</i> , what is (-1) × <i>a</i> equal to? (ii) Determine the integer whose product with (-1) is: (a) -22 (b) 37 (c) 0 Solution: (i) - 1 × a = -(1 × a) = -a, where a is an integer. (ii) (a) 22 (b) -37 (c) 0		(b) L	$HS = (-21) \times [(-21) \times (-21) $	(-4) + (-6)			
$RHS = [(-21) \times (-4)] + [(-21 \times -6)]$ $= 84 + 126 = 210$ $\therefore LHS = RHS$ Hence verified. $Q. 3. (i) \text{ For any integer } a, \text{ what is } (-1) \times a \text{ equal to?}$ $(ii) \text{ Determine the integer whose product with } (-1) \text{ is :}$ $(a) - 22 \qquad (b) 37 \qquad (c) 0$ Solution: $(i) - 1 \times a = -(1 \times a) = -a, \text{ where } a \text{ is an integer.}$ $(ii) (a) 22 \qquad (b) - 37 \qquad (c) 0$		D	$= -21 \times (-1)$	(0) = 210		1	
$= 84 + 126 = 210$ $\therefore LHS = RHS$ Hence verified. (ii) Determine the integer whose product with (-1) is: (a) - 22 (b) 37 (c) 0 Solution: (i) - 1 × a = -(1 × a) = -a, where a is an integer. (ii) (a) 22 (b) - 37 (c) 0		R	$HS = [(-21) \times (-21) $	(-4)] + [(-21	x - 6)]	
$\therefore \qquad \text{LHS} = \text{RHS} \qquad \text{Hence verified.}$ Q. 3. (i) For any integer <i>a</i> , what is (-1) × <i>a</i> equal to? (ii) Determine the integer whose product with (-1) is : (a) - 22 (b) 37 (c) 0 Solution : (i) - 1 × <i>a</i> = - (1 × <i>a</i>) = - <i>a</i> , where <i>a</i> is an integer. (ii) (a) 22 (b) - 37 (c) 0		т	= 84 + 126 =	210			1
(ii) Determine the integer <i>a</i> , what is $(-1) \times a$ equal to? (ii) Determine the integer whose product with (-1) is : (a) -22 (b) 37 (c) 0 Solution : (i) $-1 \times a = -(1 \times a) = -a$, where <i>a</i> is an integer. (ii) (a) 22 (b) -37 (c) 0		L.	HS = RHS	• (1) · · ·	1	Hence verifie	a.
(ii) Determine the integer whose product with (-1) is: (a) - 22 (b) 37 (c) 0 Solution: (i) $-1 \times a = -(1 \times a) = -a$, where a is an integer. (ii) (a) 22 (b) -37 (c) 0	(i) Determine the integer whose product with (-1) is .						
(a) -22 (b) 37 (c) 0 Solution: (i) $-1 \times a = -(1 \times a) = -a$, where a is an integer. (ii) (a) 22 (b) -37 (c) 0	(n) Determ	ine th	e mieger wnos (L) (e product v 27	v1111 (-	-1/18;	
(ii) (a) 22 (b) $= 37$ (c) 0	(a) = 22	i) _ 1 ~	$(0) = (1 \times a) =$	a where a is	e an ir	(C) U nteger	
	(ii)(a) 22	I) — I A	$u = -(1 \times u) = -$. 37	5 an n	(c) 0	

Q. 4. Starting from $(-1) \times 5$, write various products showing some pattern to show $(-1) \times (-1) = 1$.

Solution: $(-1) \times 5 = -5$ $(-1) \times 3 = -3$ $(-1) \times 1 = -1$ $(-1) \times 0 = 0$ $(-1) \times (-1) = 1$

We conclude that the product of 1 negative and 1 positive integer is negative whereas the product of 2 negative integers is positive.

Division of Integers

If both dividend and divisor are of same signs, then the quotient will be positive, whereas if both dividend and divisor are of different signs, then the quotient will be netative.

 $\begin{array}{l} a \div (-b) = (-a) \div b, \text{ where } b \neq 0 \\ -a \div (-b) = a \div b, \text{ where } b \neq 0 \\ \textbf{For example:} \qquad (-36) \div 4 = -9 \\ (-14) \div (-2) = 7 \\ 44 \div 4 = 11 \\ 39 \div (-13) = -3 \end{array}$

Division is the inverse operation of multiplication.

Try These (With Solution)

Q. Find: (a) $(-100) \div 5$ (b) $(-81) \div 9$ (c) $(-75) \div 5$ (d) $(-32) \div 2$ Solution: Since, $(-a) \div b = -(a \div b)$ (a) $(-100) \div 5 = -(100 \div 5) = -20$ (b) $(-81) \div 9 = -(81 \div 9) = -9$ (c) $(-75) \div 5 = -(75 \div 5) = -15$ (d) $(-32) \div 2 = -(32 \div 2) = -16$

Try These (With Solution)

Q. 1. Find : (a) $125 \div (-25)$ (b) $80 \div (-5)$ (c) $64 \div (-16)$ Solution : Since $a \div (-b) = -(a \div b)$ (a) $125 \div (-25) = -(125 \div 25) = -5$ (b) $80 \div (-5) = -(80 \div 5) = -16$ (c) $64 \div (-16) = -(64 \div 16) = -4$ Q. 2. Find : (a) $(-36) \div (-4)$ (b) $(-201) \div (-3)$ (c) $(-325) \div (-13)$ Solution : Since $(-a) \div (-b) = a \div b$ (a) $(-36) \div (-4) = (36 \div 4) = 9$ (b) $(-201) \div (-3) = (201 \div 3) = 67$ (c) $(-325) \div (-13) = (325 \div 13) = 25$

(1 aye 1 J)

(Page 15)

Property of Integers under Division

(i) **Closure Property :** If a and b are integers, then $a \div b$ may or may not be an integer.

For example : $16 \div (-4) = -4$, which is an integer, but $16 \div 5$ is not an integer. Observe the following table :

Statement	Inference	Statement	Inference
$(-8) \div (-4) = 2$	Result is an integer.	$(-8) \div 3 = \frac{-8}{3}$	Result is not an integer.
$(-4) \div (-8) = \frac{-4}{-8}$	Result is not an integer.	$3 \div (-8) = \frac{3}{-8}$	Result is not an integer.

Therefore, we observe that integers are not closed under division.

(ii) Commutative Property : If *a* and *b* are 2 integers, then $a \div b \neq b \div a$, *i.e.* Division of integers is not commutative.

For example :	$6 \div (-3) = -2$ and $-3 \div 6 = -2$	$\frac{-1}{2}$		
.:.	$6 \div (-3) \neq (-3) \div 6$	2		
(iii) Division by Ze	Pro (0) : For any integer $a, a \div 0$ is not	ot defined (meaningless).		
However, for any int	a = 0 $a = 0$	$(\because a \neq 0)$		
For example :	$-6 \div 0 = \text{not defined}$			
	But $0 \div (-6) = 0$			
(iv) Division by 1:A	Any integer divided by 1 gives the same	e integer. For any integer a ,		
	$a \div 1 = a$			
However,	$a \div (-1) = -(a \div 1) = -a$			
For example :	$23 \div 1 = 23$			
While	$23 \div (-1) = -23$			
(v) Associative Property : For any 3 integers a, b and c ,				
$a \div (b \div c) \neq (a \div b) \div c$, i.e. Division of integers is not associative.				
For example : $20 \div [4 \div (-2)] = 20 \div (-2) = -10$				
and	$[20 \div 4] \div (-2) = 5 \div (-2) = \frac{-5}{2}$			
	$20 \div [4 \div (-2)] \neq [20 \div 4] \div (-2)$			
These (With Solution)		(Page 16)		
Q. Is (i) $1 \div a = 1$?	(ii) $a \div (-1) = -a$?			
For any integer a. Take different values of 'a' and check.				
Solution : (i) $1 \div a = 1$ only if $a = 1$				

(ii) Yes, $a \div (-1) = -a$, for all value of *a*. **Example :** (i) If a = -5, then $a \div (-1) = (-5) \div (-1) = 5$ (ii) If a = 12, then $a \div (-1) = 12 \div (-1) = -12$ (iii) If a = -2, then $a \div (-1) = (-2) \div (-1) = 2$

Try '

EXERCISE 1.3

Q. 1. Evaluate each of the following : (a) $(-30) \div 10$ (b) $50 \div (-5)$ (c) $(-36) \div (-9)$ (d) $(-49) \div 49$ (e) $13 \div [(-2) + 1]$ (f) $0 \div (-12)$ $(g) (-31) \div [(-30) + (-1)]$ (h) $[(-36) \div 12] \div 3$ (i) $[(-6) + 5] \div [(-2) + 1]$ **Solution :** (a) $(-30) \div 10 = -(30 \div 10) = -3$ (b) $50 \div (-5) = -(50 \div 5) = -10$ (c) $(-36) \div (-9) = 36 \div 9 = 4$ (d) $(-49) \div (49) = -(49 \div 49) = -1$ (e) $13 \div [(-2) + 1] = 13 \div (-1) = -(13 \div 1) = -13$ (f) $0 \div (-12) = 0$ (g) $(-31) \div [(-30) + (-1)] = (-31) \div (-31) = 31 \div 31 = 1$ (h) $[(-36) \div 12] \div 3 = (-3) \div 3 = -(3 \div 3) = -1$ (i) $[(-6) + 5] \div [(-2) + 1] = (-1) \div (-1) = (1 \div 1) = 1$

Q. 2. Verify that $a \div (b + c) \neq (a \div b) + (a \div c)$ for each of the following values of a, b and c:

(a) a = 12, b = -4, c = 2(b) a = (-10), b = 1, c = 1**Solution :** (a) LHS = $a \div (b + c)$ RHS = $(a \div b) + (a \div c)$ $= 12 \div (-4 + 2)$ $=(12 \div (-4) + (12 \div 2))$ $= 12 \div (-2)$ = -3 + 6= -6= 3LHS \neq RHS (b) LHS = $a \div (b + c)$ RHS = $(a \div b) + (a \div c)$ $= -10 \div (1+1)$ $= (-10 \div 1) + (-10 \div 1)$ $= -10 \div 2$ = -10 + (-10)= -5= -20LHS \neq RHS **Q. 3.** Fill in the blanks : (a) $369 \div = 369$ (b) $(-75) \div = -1$ (c) $(-206) \div ___ = 1$ $(d) - 87 \div = 87$ (f) ____ $\div 48 = -1$ (e) $\div 1 = -87$ (g) $20 \div = -2$ (h) ____ \div (4) = – 3 Solution : (a) 1 (c) - 206(b) 75 (d) - 1(e) - 87(f) - 48(g) - 10(h) - 12

Q. 4. Write five pairs of integers (a, b) such that $a \div b = -3$. One such pair is (6, -2) because $6 \div (-2) = (-3)$.

Solution: (a) $12 \div (-4) = -3$ (b) $-9 \div 3 = -3$ (c) $45 \div (-15) = -3$ (d) $(-18) \div 6 = -3$ (e) $-21 \div 7 = -3$

Q. 5. The temperature at 12 noon was 10°C above zero. If it decreases at the rate of 2°C per hour until midnight, at what time would the temperature be 8°C below zero? What would be the temperature at mid-night?

Solution : Temperature at 12 noon = + 10°C