## NCERT के पूर्णतया संशोधित नवीनतम् पाठ्यक्रम पर आधारित

## संजीवं

# रसायन विज्ञान 

कक्षा-12 (भाग-1)

माध्यमिक शिक्षा बोर्ड, राजस्थान के विद्यार्थियों के लिए

लेखक :
डॉ. के.बी. बंसल
एम.एससी., एम.फिल., पीएच.डी.
सहआचार्य, रसायन विज्ञान विभाग राजकीय स्नातकोत्तर महाविद्यालय, दौसा

## संजीव प्रकाशन

- प्रकाशक :


## संजीव प्रकाशन

धामाणी मार्केट, चौड़ा रास्ता,
जयपुर-3
email : sanjeevprakashanjaipur@gmail.com
website : www.sanjivprakashan.com

- (c) प्रकाशकाधीन
- मूल्य : ₹ 400.00
- लेजर कम्पोजिंग :

संजीव प्रकाशन (D.T.P. Department), जयपुर

- मुद्रक :

मनोहर आर्ट प्रिन्टर्स, जयपुर
****
*. इस पुस्तक में त्रुटियों को दूर करने के लिए हर संभव प्रयास किया गया है। किसी भी त्रुटि के पाये जाने पर अथवा किसी भी तरह के सुझाव के लिए आप हमें निम्न पते पर email या पत्र भेजकर सूचित कर सकते हैं-

> email: sanjeevprakashanjaipur@gmail.com पता $:$ प्रकाशन विभाग संजीव प्रकाशन  धामाणी मार्केट, चौड़ा रास्ता, जयपुर

आपके द्वारा भेजे गये सुझावों से अगला संस्करण और बेहतर हो सकेगा।

* यद्यपि इस पुस्तक को प्रकाशित करने में सभी सावधानियों का पालन किया गया है तथापि इस पुस्तक में प्रकाशित किसी त्रुटि के प्रति तथा इससे होने वाली किसी भी क्षति के लिए लेखक, प्रकाशक, संपादक तथा मुद्रक किसी भी रूप में जिम्मेदार नहीं हैं।
* सभी प्रकार के विवादों का न्यायिक क्षेत्र ‘ जयपुर ' होगा।


## गूनिका

NCERT के नवीनतम पाठ्यक्रम के अनुसार कक्षा 12 के विद्यार्थियों के लिए रसायन विज्ञान भाग-1 की इस अद्वितीय पुस्तक के संशोधित एवं परिवर्धित संस्करण को प्रस्तुत करते हुए मुझे अपार हर्ष हो रहा है। प्रस्तुत पुस्तक सरल एवं सहज भाषा में लिख्री गई है ताकि छात्र विषय को आसानी से आत्मसात् कर सकें। यह पुस्तक कक्षा 12 के विद्यार्थियों के लिए तो उपयोगी है ही, साथ ही मेडिकल तथा इंजीनियरिंग की विभिन्न प्रवेश परीक्षाओं की तैयारी कर रहे विद्यार्थियों के लिए भी अत्यन्त उपयोगी साबित होगी। आशा है कि विद्यार्थी वर्ग इससे लाभान्वित होगा तथा शिक्षक वर्ग मेरे इस प्रयास को सराहेगा। बाजार में उपलब्ध अन्य पुस्तकों की तुलना में इस पुस्तक की अनेक ऐसी विशेषताएँ हैं जिनके कारण यह एक अद्वितीय पुस्तक है -

1. सैद्धान्तिक विषय-सामग्री का पर्याप्त तथा सटीक विवरण चित्रों सहित दिया गया है।
2. NCERT के नवीनतम पाठ्यक्रम का पूर्णतः पालन किया गया है।
3. शीर्षक एवं महत्त्वपूर्ण पदों के अंग्रेजी शब्द भी कोष्ठक में दिए गए हैं।
4. हिन्दी भाषा के जटिल शब्दों के स्थान पर सरल शब्दों का प्रयोग किया गया है।
5. पाठ्यपुस्तक के सभी उदाहरणों तथा पाठ्यनिहित प्रश्नों को हल सहित यथास्थान समावेशित किया गया है।
6. अध्ययन-सामग्री के साथ बीच-बीच में अभ्यास हेतु अतिलघूत्तरात्मक तथा लघूत्तरात्मक प्रश्न भी हल सहित दिए गए हैं।
7. पाठ्यपुस्तक में अध्याय के अन्त में दिए गए सभी अभ्यास प्रश्नों के सम्पूर्ण हल सरल भाषा में दिए गए हैं।
8. अध्याय की पुनरावृत्ति हेतु प्रत्येक अध्याय में बिन्दुवार सारांश भी दिया गया है।
9. प्रत्येक अध्याय में परीक्षा में पूछे जाने योग्य सभी प्रकार के प्रश्न (वस्तुनिष्ठ, रिक्तस्थान, अतिलघूत्तरात्मक, लघूत्तरात्मक, आंकिक तथा निबन्धात्मक प्रश्न ) दिए गए हैं।
10. प्रत्येक अध्याय के अन्त में विभिन्न प्रतियोगी परीक्षाओं में पूछे गये बहुविकल्पीय प्रश्नों को भी हल सहित दिया गया है।
11. पुस्तक के अन्त में परिशिष्ट $I$ से $I X$ तक रसायन विज्ञान से सम्बन्धित महत्त्वपूर्ण सामग्री का संकलन प्रस्तुत किया गया है। पुस्तक का नवीनतम संशोधित संस्करण नये कलेवर में प्रस्तुत किया जा रहा है। इसमें विषय विशेषज्ञों, शिक्षकों तथा पाठकों से प्राप्त बहुमूल्य सुझावों को भी उचित स्थान दिया गया है।

मैं हृद्य से उस परमपिता परमेश्वर को शत्-शत् नमन करता हूँ जिसकी अनवरत प्रेरणा तथा आशीर्वाद से ही इस पुस्तक का लेखन सम्भव हो पाया है । मैं अपनी पत्नी श्रीमती अनिता बंसल को भी धन्यवाद ज्ञापित किए बिना नहीं रह सकता जिनके सहयोग के बिना इस पुस्तक का लेखन सम्भव नहीं हो पाता।

इस पुस्तक के प्रकाशन हेतु हम संजीव प्रकाशन के भी अत्यन्त आभारी हैं जिनके अथक तथा सतत प्रयासों से इस पुस्तक का प्रकाशन हो पाया है।

यद्यपि पुस्तक के प्रकाशन में पूर्ण सावधानी रखी गई है फिर भी मानवीय त्रुटियाँ होना सम्भावित है, अतः पुस्तक को और अधिक उपयोगी बनाने हेतु अपने विद्वान् साथियों एवं विद्यार्थियों के बहुमूल्य सुझावों का सदैव स्वागत है।

सहयोग की अपेक्षा में !
लेखक
डॉ. के.बी. बंसल

## विषय-सूची

## 1. विलयन

(Solution) ..... 1-58
2. वैद्युत रसायन
(Electrochemistry) ..... 59-117
3. रासायनिक बलगतिकी
(Chemical Kinetics) ..... 118-172
4. $d$-एवं $f$-ब्लॉक के तत्व
(The $d$ - and $f$-Block Elements) ..... 173-224
5. उपसहसंयोजन यौगिक
(Coordination Compound) ..... 225-277

- Periodic Table ..... 278
- परिशिष्ट ..... 279-290
- लघुगणक सारणी ..... 291-293


# उच्च माध्यमिक परीक्षा, 2023 <br> रसायन विज्ञान <br> (Chemistry) 

समय : 3 घण्टे 15 मिनट
परीक्षार्थियों के लिए सामान्य निर्देश :
General Instructions to the Examinees :

1. परीक्षार्थी सर्वप्रथम अपने प्रश्न-पत्र पर नामांक अनिवार्यतः लिखें।

Candidate must write first his/her Roll No. on the question paper compulsorily.
2. सभी प्रश्न करने अनिवार्य हैं।

All the questions are compulsory.
3. प्रत्येक प्रश्न का उत्तर दी गई उत्तर-पुस्तिका में ही लिखें।

Write the answer to each question in the given answer-book only.
4. जिन प्रश्नों में आन्तरिक खण्ड हैं, उन सभी के उत्तर एक साथ ही लिखें।

For questions having more than one part, the answers to those parts are to be written together in continuity.
5. प्रश्न-पत्र के हिन्दी व अंग्रेजी रूपान्तरण में किसी प्रकार की त्रुटि/अन्तर/विरोधाभास होने पर हिन्दी भाषा के प्रश्न को ही सही मानें।

If there is any error/difference/contradiction in Hindi \& English versions of the question paper, the question of Hindi version should be treated valid.
6. प्रश्न का उत्तर लिखने से पूर्व प्रश्न का क्रमांक अवश्य लिखें।

Write down the serial number of the question before attempting it.
7. प्रश्न क्रमांक 19 से 20 में आन्तरिक विकल्प हैं।

Question No. 19 to 20 have internal choice.

## खण्ड-अ (SECTION-A)

वस्तुनिष्ठ प्रश्न (Multiple Choice Questions) :

1. निम्नांकित प्रश्नों में दिये गये सही विकल्प का चयन कर उत्तर-पुस्तिका में लिखिए :

Write the answer of following multiple choice questions in the given answer book:
(i) डेन्यल सेल में $\mathrm{Zn}^{2+}$ व $\mathrm{Cu}^{2+}$ आयनों की सान्द्रता एक इकाई ( 1 मोल डेसीमीटर ${ }^{-3}$ ) हो तो विद्युतीय विभव का मान होगा- 1
(अ) 0.00 V
(ब) 1.10 V
(स) 1.35 V
(द) 2.00 V

When concentration of $\mathrm{Zn}^{2+}$ and $\mathrm{Cu}^{2+}$ ions is unity ( $1 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ ), then electrical potential of Daniell cell will be-
(A) 0.00 V
(B) 1.10 V
(C) 1.35 V
(D) 2.00 V
(ii) व्यंजक $k=\frac{2.303}{t} \log \frac{[\mathrm{R}]_{0}}{[\mathrm{R}]}$ कोटि की अभिक्रिया का समाकलित वेग समीकरण है-
(अ) शून्य कोटि
(ब) प्रथम कोटि
(स) द्वितीय कोटि
(द) तृतीय कोटि

Expression $k=\frac{2.303}{t} \log \frac{[\mathrm{R}]_{0}}{[\mathrm{R}]}$ is integrated rate equation of order of reaction-
(A) Zero order
(B) First order
(C) Second order
(D) Third order
(iii) समय के किसी क्षण पर वेग व्यक्त करने के लिए. $\qquad$ ज्ञात किया जाता है-
(अ) प्रारस्भिक वेग
(ब) तात्क्षणिक वेग
(स) औसत वेग
(द) मानक वेग

To express the rate at a particular moment of time we determine the $\qquad$
(A) Initial rate
(B) Instantaneous rate
(C) Average rate
(D) Standard rate
(iv) कोलाइडी एन्टीमनी का उपयोग किस रोग के इलाज में होता है-
(अ) कालाजार
(ब) पेट की गड़बड़ी
(स) त्वचा सम्बन्धी रोग
(द) लैंगिक रोग

Colloidal antimony is used in curing of-
(A) Kalaazar
(B) Stomach disorders
(C) Skin disease
(D) Sexual disease
(v) कैलामाइन अयस्क है-
(अ) A 1 का
(ब) Fe का
(स) Cu का
(द) Zn का

Calamine is ore of-
(A) Al
(B) Fe
(C) Cu
(D) Zn
(vi) द्विदंतुर लिगण्ड है-
(अ) $\mathrm{C}_{2} \mathrm{O}_{4}^{2-}$
(ब) $\mathrm{SCN}^{-}$
(स) $\mathrm{NH}_{3}$
(द) $\mathrm{Cl}^{-}$
Didentate Ligand is-
(A) $\mathrm{C}_{2} \mathrm{O}_{4}^{2-}$
(B) $\mathrm{SCN}^{-}$
(C) $\mathrm{NH}_{3}$
(D) $\mathrm{Cl}^{-}$
(vii) $\mathrm{CF}_{2} \mathrm{Cl}_{2}$ का फ्रिऑन पद्धति में नाम है-
(अ) फ्रिऑन 112
(ब) फ्रिऑन
(स) फ्रिऑन 122
(द) फ्रिऑन 11
The name of $\mathrm{CF}_{2} \mathrm{Cl}_{2}$ in Freon method is-
(A) Freon 112
(B) Freon 12
(C) Freon 122
(D) Freon 11
(viii) क्यूमीन से फिनॉल प्राप्त करने की अभिक्रिया में उपोत्पाद है-
(अ) ट्राइब्रोमोफिनॉल
(ब) बेन्जोक्विनोन
(स) पिक्रिक अम्ल
(द) ऐसीटोन

In reaction of manufacturation of phenol from cumene the by-product is-
(A) Tribromophenol
(B) Benzoquenone
(C) Picric acid
(D) Acetone
(ix) नाइट्रोजनी क्षारक DNA में नहीं पाया जाता-
(अ) ऐडेनीन
(ब) साइटोसिन
(स) ग्वानीन
(द) यूरेसिल
The nitrogeneous base not present in DNA-
(A) Adenine
(B) Cytosine
(C) Guanine
(D) Uracil

क्त स्थानों की पूर्ति कीजिए-
2. रिक्त स्थानों की पूर्ति की
Fill in the blanks-
(i) जब मिलाया गया पदार्थ अभिक्रिया की दर को कम करता है, तो उत्प्रेरक के स्थान पर उसे $\qquad$ ...कहते हैं।
When the added substance reduces the rate of reaction, then it called....................in place of catalyst.
(ii) अणुक स्पीशीज का किसी ठोस या द्रव की स्थूल की अपेक्षा पृष्ठ पर संचित होना...............कहलाता है । 1

The accumulation of molecular species at the surface rather than in the bulk of a solid or liquid is termed.
(iii) विलियमसन संश्लेषण में. $\qquad$ .की सोडियम ऐल्कोक्साइड के साथ अभिक्रिया से डाइ ऐल्किल ईथर बनता है।
In Williamson synthesis the...................reacts with sodium alkoxide and give dialkyl ether.
(iv) $\ldots \ldots \ldots \ldots .$. का जलीय विलयन फेलिंग विलयन A कहलाता है।
The aqueous solution of is called Fehling solution A.
3. अतिलघूत्तरात्मक प्रश्न (Very Short Answer Type Questions) : ..... $8 \times 1=8$
(i) प्राकृतिक एवं कृत्रिम नाभिकीय (रेडियोऐक्टिव) क्षय की कोटि लिखिए। ..... 1
Write order of reaction of natural and artificial nuclear (radioactive) decay.(ii) यूरिया का अमोनिया एवं कार्बन डाइऑक्साइड में अपघटन में प्रयुक्त एन्जाइम का नाम लिखिए।1
Write the name of enzyme used in decomposition of urea into ammonia and carbondioxide.
(iii) सुक्रोस को हावर्थ संरचना द्वारा निरूपित कीजिए।1
Represent sucrose by Haworth structure.
(iv) वैद्युत अपोहन का नामांकित चित्र बनाइये।1
Draw labelled diagram of electro-dialysis.
(v) फेन प्लवन विधि का नामांकित चित्र बनाइये। ..... 1
Draw labelled diagram of frouth floatation process.
(vi) फिनॉल से सेलिसिलिक अम्ल बनाने की रासायनिक समीकरण लिखिए। ..... 1
Write chemical equation to prepare salicylic acid from phenol.
(vii) आइसो ब्युटिल ऐल्कोहॉल का IUPAC नाम लिखिए।1
Write IUPAC name of isobutyl alcohol.
(viii) बेन्जीन डाइऐजोनियम क्लोराइड का रासायनिक सूत्र लिखिए। ..... 1
Write chemical formula of benzene diazonium chloride.
खण्ड-ब (SECTION-B)
लघूत्तरात्मक प्रश्न (Short Answer Type Questions) :4. फलक-केन्द्रित घनीय एकक कोष्टिका में कुल कणों की संख्या परिकलित कीजिए।$11 / 2$Calculate number of particles in face centered cubic unite cell.
रसायन विज्ञान कक्षा-XII ..... 3
5. P -प्रकार के अर्धचालक को एक उदाहरण देकर समझाइये। ..... $11 / 2$
Explain P-type semiconductor by one example.6. क्लोरो बेन्जीन से डाइफेनिल बनाने की रासायनिक अभिक्रिया की रासायनिक समीकरण लिखिए।$11 / 2$
Write chemical equation to prepare diphenyl from chlorobenzene.
7. एथिलीन ग्लाइकॉल का $35 \%$ (V/V) विलयन वाहनों के इंजन को ठण्डा करने के काम आता है। इसमें जल का आयतन मिलीलीटर में ज्ञातकीजिए।$11 / 2$
A $35 \%$ (V/V) solution of ethylene glycol is used in vehicle for cooling the engine. Determine the volume ofwater in millilitre.
8. परासरण की परिभाषा लिखिए। समुद्री जल के विलवणीकरण में प्रयुक्त विधि का नाम लिखिए। ..... $11 / 2$
Write definition of osmosis. Write name of method used in desalination of sea water.
9. $\left[\mathrm{Pt}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \mathrm{Br}_{2}\right]$ के ज्यामितीय समावयवियों की ज्यामिति बनाकर विन्यास लिखिए।$11 / 2$
Draw the geometries of geometrical isomers of $\left[\mathrm{Pt}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \mathrm{Br}_{2}\right]$ and write their configurations.

10. निम्नांकित के IUPAC नाम लिखिए :$11 / 2$
(i) $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}{ }^{2+}\right.$
(ii) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Br}_{3}$
(iii) $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$
Write IUPAC names of following :
(i) $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]^{2+}$
(ii) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Br}_{3}$
(iii) $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$
11. हॉफमान ब्रोमामाइड निम्नीकरण अभिक्रिया पर टिप्पणी लिखिए।
Write short note on Hoffmann bromamide degradation reaction.
12. कारण दीजिए कि ट्राइमेथिल एमीन, मेथिल एमीन से कम क्षारीय है।
Give reason that trimethyl amine is less basic than methyl amine.
13. कृत्रिम मधुरक को कोई दो उदाहरण देकर समझाइये।
Explain artificial sweetening agents by any two examples.
14. निम्नांकित के कोई एक उदाहरण दीजिए-
(i) प्रतिजैविक औषध
(ii) स्वापक पीड़ाहारी
(iii) प्रतिअम्ल औषध
Give any one example of following-
(i) Antibiotics
(ii) Narcotic analgesics
(iii) Antacids
15. स्वार्ट अभिक्रिया को एक उदाहरण देकर समझाइये।
Explain Swarts reaction by any one example.

## खण्ड-स (SECTION-C)

दीर्घ उत्तरीय प्रश्न (Long Answer Type Questions) :
16. (i) ईंधन सेल की संरचना का वर्णन कीजिए।
(ii) ईंधन सेल की संरचना का नामांकित चित्र बनाइये। $2+1=3$
(i) Describe structure of fuel cell.
(ii) Draw labelled diagram of fuel cell.
17. (i) $\mathrm{Cu}_{(a q)}^{2+}$ आयन के लिए ‘प्रचक्रण मात्र' चुम्बकीय आघूर्ण की गणना कीजिए।
(ii) कारण दीजिए कि $\mathrm{Zn}, \mathrm{Cd}, \mathrm{Hg}$ व Cn संक्रमण तत्त्व नहीं है।
(iii) मिश्र धातु पीतल के अवयवों के नाम लिखिए। $1+1+1=3$
(i) Calculate the 'Spin only' magnetic moment of $\mathrm{Cu}_{(a q)}^{2+}$ ion.
(ii) Give reason that $\mathrm{Zn}, \mathrm{Cd}, \mathrm{Hg}$ and Cn are not transition elements.
(iii) Write names of components of brass.
18. अन्तर लिखिए-
(i) अल्प घनत्व पॉलिथीन व उच्च घनत्व पॉलिथीन।
(ii) समबहुलक व सहबहुलक।
(iii) प्राकृतिक बहुलक व संश्लेषित बहुलक।

## Write differences-

(i) Low density polythene and High density polythene.
(ii) Homopolymers and copolymers.
(iii) Natural polymers and synthetic polymers.

## खण्ड-द (SECTION-D)

निबन्धात्मक प्रश्न (Essay Type Questions) : ..... $2 \times 4=8$
19. (i) पाइरोफॉस्फोरिक अम्ल व साइक्लो ट्राईमेटाफॉस्फोरिक अम्ल के संरचना सूत्र लिखिए।
(ii) विषमलंबाक्ष गंधक व एकनताक्ष गंधक में कोई दो अंतर लिखिए। ..... $2+2=4$
अथवा
(i) परऑक्सोडाइसल्फ्युरिक अम्ल व पाइरोसल्फ्युरिक अम्ल के संरचना सूत्र लिखिए।
(ii) श्वेत फॉस्फोरस व लाल फॉस्फोरस में कोई दो अन्तर लिखिए।
(i) Write structural formula of pyrophosphoric acid and cyclo trimetaphosphoric acid.
(ii) Write any two differences between rhombic sulphur and monoclinic sulphur.

OR
(i) Write structural formula of peroxodisulphuric acid and pyrosulphuric acid.
(ii) Write any two differences between white phosphorus and red phosphorus.
20. (i) $2 \mathrm{CH}_{3} \mathrm{CHO} \xrightarrow{\text { तनु } \mathrm{NaOH}} x \xrightarrow{\Delta} y$ उपरोक्त अभिक्रिया अनुक्रम में $x$ व $y$ के रासायनिक सूत्र लिखकर IUPAC नाम लिखिए।
(ii) गाटरमान-कॉख अभिक्रिया पर टिप्पणी लिखिए।
$2+2=4$

## अथवा

(i) $\mathrm{CH}_{3} \mathrm{MgBrC+} \mathrm{O}_{2} \xrightarrow{\text { शुष्क ईथर }} x \xrightarrow{+\mathrm{H}_{3}^{+} \mathrm{O}} y$ उपरोक्त अभिक्रिया अनुक्रम में $x$ व $y$ के रासायनिक सूत्र लिखकर नाम लिखिए।
(ii) रोजेनमुण्ड अपचयन पर टिप्पणी लिखिए।
(i) $2 \mathrm{CH}_{3} \mathrm{CHO} \xrightarrow{\text { dil. } \mathrm{NaOH}} x \xrightarrow[-\mathrm{H}_{2} \mathrm{O}]{\Delta} y$ Write chemical formula and IUPAC name of $x$ and $y$ in above chemical sequence.
(ii) Write short note on Gattermann-Koch reaction.

## OR

(i) $\mathrm{C}_{3} \mathrm{HMgBr}+\mathrm{CO}_{2} \xrightarrow{\text { dryether }} x \xrightarrow{+4 \mathrm{H} \mathrm{O}} y$ Write chemical formula and name of $x$ and $y$ in above chemical sequence.
(ii) Write short note on Rosenmund reduction.

1.1. विलयनों के प्रकार (Types of Solutions)
1.2. विलयनों की सान्द्रता को व्यक्त करना (Expressing Concentration of Solutions)
1.3. विलेयता (Solubility)
1.4. द्रवीय विलयनों का वाष्प दाब (Vapour Pressure of Liquid Solutions)
1.5. आदर्श एवं अनादर्श विलयन (Ideal and Non-ideal Solutions)
1.6. अणुसंख्य गुणधर्म और आण्विक द्रव्यमान की गणना (Colligative Properties and Determination of Molar Mass)
1.7. असामान्य मोलर द्रव्यमान (Abnormal Molar Mass)

विलयन (Solutions)-दो या दो से अधिक पदार्थों (जो आपस में क्रिया न करें) के समांगी मिश्रण (Homogenous Mixture) को विलयन कहते हैं। जैसे—पीतल ( Zn तथा Ni का मिश्रण), जर्मन सिल्वर ( $\mathrm{Cu}, \mathrm{Zn}$ तथा Ni का मिश्रण) तथा काँसा $(\mathrm{Cu}$ तथा Sn का मिश्रण) विलयनों के विभिन्न उदाहरण हैं।

समांगी मिश्रण से तात्पर्य है कि विलेय, विलायक में समान रूप से वितरित होना चाहिए। अर्थात् विलयन के सभी भागों का संघटन तथा गुण समान हो।

विलयन में अधिक मात्रा में उपस्थित पदार्थ विलायक (Solvent) तथा कम मात्रा में उपस्थित पदार्थ विलेय (Solute) कहलाता है। विलायक, विलयन की भौतिक अवस्था निर्धारित करता है।

दो पदार्थों से बना विलयन द्विअंगी (Binary) तथा तीन पदार्थों से मिलकर बना विलयन त्रिअंगी (Ternary) विलयन कहलाता है। सामान्यत: द्विअंगी विलयन ही प्रयुक्त किए जाते हैं।

निश्चित ताप पर, विलायक की निश्चित मात्रा में जब विलेय की अधिकतम मात्रा घुली हो तो इसे संतृप्त विलयन (Saturated Solution) कहते हैं, अर्थात् इसमें और अधिक विलेय नहीं घोला जा सकता। वह विलयन जिसमें विलेय कम मात्रा में घुला हुआ हो अर्थात् उसमें और अधिक विलेय घोला जा सकता है, तो इसे असंतृप्त विलयन (Unsaturated Solution) कहते हैं। असंतृप्त विलयन भी तनु (Dilute) तथा सान्द्र (Concentrate) दो प्रकार के होते हैं।

## 1.1. विलयनों के प्रकार <br> (Types of Solutions)

विलयन की भौतिक अवस्था के आधार पर विलयनों को मुख्यत: तीन भागों में वर्गीकृत किया जा सकता है-
(a) गैसीय विलयन (Gaseous Solution) -वह विलयन जिसमें विलायक गैस होती है लेकिन विलेय गैस, द्रव या ठोस हो सकते हैं। दो गैसों से बना विलयन पूर्णतः समांगी होता है तथा इसकी विलेयता अधिकतम होती है। अर्थात् प्रत्येक गैस, किसी भी गैस में पूर्णतः मिश्रणीय है क्योंकि गैसीय विलयन में गैसों के अणुओं का स्वतंत्र विचरण होता है।
(b) द्रव विलयन (Liquid Solution) -वह विलयन जिसमें विलायक द्रव तथा विलेय के रूप में गैस, द्रव या ठोस होते हैं, तो इसे द्रव विलयन कहते हैं। जल को विलायक के रूप में प्रयुक्त करने पर बना विलयन जलीय विलयन (Aqueous solution) कहलाता है।
(c) ठोस विलयन (Solid Solution)—जब किसी ठोस, द्रव या गैस के कण आण्विक या परमाण्विक आकार में किसी दूसरे ठोस पदार्थ में अनियमित (Irregular) रूप से परिक्षिप्त (disperse) होते हैं, तो इसे ठोस विलयन कहते हैं।

उपर्युक्त तीनों प्रकार के विलयनों को निम्नलिखित सारणी के रूप में व्यवस्थित किया जा सकता है। अतः कुल 9 प्रकार के विलयन सम्भव हैं।

| सारणी—विलयनों के प्रकार |  |  |  |
| :---: | :---: | :---: | :---: |
| विलयन का प्रका | विलेय | विलायक | उदाहरण |
| गैसीय विलयन | गैस | गैस | ऑक्सीजन तथा नाइट्रोजन गैस का मिश्रण $\left(\mathrm{O}_{2}+\mathrm{N}_{2}\right)$, वायु |
|  | द्रव | गैस | क्लोरोफॉर्म का नाइट्रोजन गैस में मिश्रण, वायु में जल वाष्प |
|  | ठोस | गैस | कपूर का नाइट्रोजन गैस में विलयन, धआं |
| द्रव विलयन | गैस | द्रव | जल में घुली हुई ऑक्सीजन $\left(\mathrm{O}_{2}\right)$, अमोनियामय जल |
|  | द्रव | द्रव | जल में घुला हुआ एथेनॉल $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right), \mathrm{CHCl}_{3}$ तथा $\mathrm{CCl}_{4}$ |
|  | ठोस | द्रव | जल में घुला हुआ ग्लूकोस $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$, लवण आदि |
| ठोस विलयन | गैस | ठोस | हाइड्रोजन का पैलेडियम या Ni में विलयन |
|  | द्रव | ठोस | पारे का सोडियम के साथ अमलगम, पीतल, Hg तथा Zn |
|  | ठोस | ठोस | ताँबे का सोने में विलयन $(\mathrm{Cu}$ तथा $\mathrm{Au}),(\mathrm{Zn}$ तथा Ni$)$ |

## 1.2 विलयनों की सान्द्रता को व्यक्त करना (Expressing Concentration of Solutions)

विलायक की निश्चित मात्रा में घुली हुई विलेय की मात्रा को विलयन की सान्द्रता कहते हैं। किसी विलयन का संघटन (Composition) उसकी सान्द्रता से व्यक्त किया जाता है। किसी विलयन की सान्द्रता का मात्रात्मक वर्णन मुख्यतः दो प्रकार के मात्रकों (Units) द्वारा किया जाता है-
(a) भार-आयतन मात्रक (Weight-volume units) w/V
(b) भार-भार मात्रक (Weight-weight units) w/w
(a) भार-आयतन मात्रक (w/V units) -इनमें विलेय को भार में तथा विलायक या विलयन को आयतन में व्यक्त किया जाता है। ये मात्रक ताप पर निर्भर करते हैं क्योंकि ताप बढ़ाने पर आयतन में परिवर्तन होता है। इनमें निम्नलिखित मात्रक होते हैं-
(i) द्रव्यमान-आयतन प्रतिशत (w/V\%)
(ii) मोलरता (Molarity)
(iii) नॉर्मलता (Normality)
(iv) फॉर्मलता (Formality)
(i) द्रव्यमान-आयतन प्रतिशत $(\mathrm{w} / \mathrm{V} \%)-100 \mathrm{ml}$ विलयन में घुले हुए विलेय का ग्राम में द्रव्यमान, द्रव्यमान-आयतन प्रतिशत कहलाता है।

$$
\mathrm{w} / \mathrm{V} \%=\frac{\text { विलेय की मात्रा (ग्रामों में) }}{\text { विलयन का आयतन (मिलीलीटर में) }} \times 100
$$

(ii) मोलरता (Molarity) (M)—एक लीटर विलयन में घुले हुए विलेय के मोलों की संख्या को विलयन की मोलरता $(\mathrm{M})$ कहते हैं।

$$
\begin{aligned}
\text { मोलरता } & =\frac{\text { विलेय के मोल }}{\text { विलयन का आयतन लीटर में }} \\
& =\frac{\text { विलेय की मात्रा (ग्राम में) }}{\text { विलेय का अणुभार } \times \text { विलयन का आयतन (लीटर में) }}
\end{aligned}
$$

यदि w ग्राम विलेय, V मिली विलयन में घुला हो तो
मोलरता $(\mathrm{M})=\frac{\mathrm{W} \times 1000}{\mathrm{M} . \mathrm{W} . \times \mathrm{V}}$
M.W. $=$ विलेय का अणुभार

उदाहरण— NaOH के $0.25 \mathrm{molL}^{-1}(0.25 \mathrm{M})$ विलयन का अर्थ है कि 0.25 मोल NaOH एक लीटर विलयन में घुला हुआ है।
(iii) नॉर्मलता (Normality) ( N ) —विलेय के ग्राम तुल्यांकों की संख्या जो एक लीटर विलयन में घुली होती है, उसे विलयन की नॉर्मलता कहते हैं।

$$
\begin{aligned}
& \text { नॉर्मलता }(\mathrm{N})=\frac{\text { विलेय के ग्राम तुल्यांक }}{\text { विलयन का आयतन (लीटर में) }} \\
& \mathrm{N}=\frac{\text { विलेय की मात्रा (ग्राम में) }}{\text { विलेय का तुल्यांको भार } \times \text { विलयन का आयतन }} \\
& \text { (लीटर में) }
\end{aligned}
$$

जब w ग्राम विलेय V मिली विलयन में घुला हो तो

$$
\mathrm{N}=\frac{\mathrm{w} \times 1000}{\text { E.W. } \times \mathrm{V}}
$$

$\mathrm{EW}=$ विलेय का तुल्यांकी भार
विलयनों की सान्द्रता को व्यक्त करने हेतु सेमी. $\left(\frac{1}{2}\right)$, पेन्टी $\left(\frac{1}{5}\right)$, डेसी $\left(\frac{1}{10}\right)$ तथा सेन्टी $\left(\frac{1}{100}\right)$ इत्यादि का प्रयोग किया जाता है। अतः $\frac{\mathrm{N}}{2}$ का अर्थ है सेमी. नॉर्मल विलयन, इसी प्रकार $\frac{\mathrm{M}}{100}$ का अर्थ है सेन्टी मोलर विलयन।
(iv) फॉर्मलता (Formality) ( F ) -जब विलेय, विलयन में संगुणित या वियोजित रूप में पाया जाता है तो सान्द्रता को व्यक्त करने के लिए फॉर्मलता प्रयुक्त की जाती है, जैसे—बेन्जोइक अम्ल को बेन्जीन में घोलने पर यह द्विलक (Dimer) बनाता है तथा आयनिक यौगिक जैसे NaCl इत्यादि के लिए अणुभार के स्थान पर सूत्रभार प्रयुक्त किया जाता है क्योंकि इनके विलयन में अणु नहीं होते हैं।

एक लीटर विलयन में घुले हुए विलेय के ग्राम सूत्र भारों की संख्या को विलयन की फॉर्मलता कहते हैं।

$$
\begin{aligned}
& \text { फॉर्मलता }(\mathrm{F})=\frac{\text { विलेय के ग्राम सूत्रभार }}{\text { विलयन का आयतन (लीटर में) }} \\
& \mathrm{F}=\frac{\text { विलेय की मात्रा (ग्राम में) }}{\text { विलेय का सूत्रभार } \times \text { विलयन का आयतन }} \\
& \text { (लीटर में) }
\end{aligned}
$$

जब w ग्राम विलेय, V मिली विलयन में घुला हो तो

$$
\mathrm{F}=\frac{\mathrm{w} \times 1000}{\text { F.W. } \times \mathrm{V}}
$$

F.W. = विलेय का सूत्र भार,

जब अणुभार $=$ तुल्यांकी भार $=$ सूत्रभार
तो $\mathrm{M}=\mathrm{N}=\mathrm{F}$
तुल्यांकी भार (Equivalent Weight)—किसी पदार्थ का तुल्यांकी भार, भार भागों की वह संख्या है जो हाइड्रोजन के एक भारभाग या ऑक्सीजन के आठ भार-भाग या क्लोरीन के 35.5 भार भागों से क्रिया करती है या इन्हें इनके यौगिकों से विस्थापित करती है। विभिन्न पदार्थों के तुल्यांकी भार निम्नलिखित सूत्रों द्वारा ज्ञात किए जा सकते हैं-

अम्ल का तुल्यांकी भार $=\frac{\text { अणुभार }}{\text { प्रतिस्थापनीय } \mathrm{H}^{+} \text {की सं. (क्षारकता) }}$
क्षार का तुल्यांकी भार $=\frac{\text { अणुभार }}{\text { प्रतिस्थापनीय } \overline{\mathrm{O}} \mathrm{H} \text { की सं. (अम्लता) }}$
लवण का तुल्यांकी भार $=\frac{\text { अणुभार }}{\text { कुल धनावेश या ऋणावेश }}$
ऑक्सीकारक का तुल्यांकी भार
अणुभार
$=\frac{\text { अणुभार }}{\text { प्रति अणु ग्रहण किए गए इलेक्ट्रॉनों की सं. }}$

अपचायक का तुल्यांकी भार

$$
=\frac{\text { अणुभार }}{\text { प्रति अणु त्यागे गए इलेक्ट्रॉनों की संख्या }}
$$

परमाणु का तुल्यांकी भार $=\frac{\text { परमाणु भार }}{\text { संयोजकता }}$
(b) भार-भार मात्रक (W/W units) —इन मात्रकों में विलेय तथा विलायक दोनों को भार में व्यक्त किया जाता है। ये मात्रक ताप पर निर्भर नहीं करते हैं क्योंक भार ताप पर निर्भर नहीं करता। इनमें निम्नलिखित मात्रक होते हैं-
(i) द्रव्यमान प्रतिशत (Mass Percentage) (W/W\%)
(ii) मोल अंश या मोल भिन्न (Mole Fraction)
(iii) मोललता (Molality)
(iv) पार्ट पर मिलियन (ppm)
(i) द्रव्यमान प्रतिशत (Mass Percentage) (W/W\%) किसी विलेय के भार-भागों की वह संख्या जो विलयन के 100 भारभागों में उपस्थित होती है, उसे द्रव्यमान प्रतिशत कहते हैं।

विलयन में किसी अवयव का द्रव्यमान प्रतिशत

$$
=\frac{\text { विलयन में उपस्थित अवयव का द्रव्यमान }}{\text { विलयन का कुल द्रव्यमान }} \times 100
$$

विलयन का द्रव्यमान
$=$ विलेय का द्रव्यमान + विलायक का द्रव्यमान
उदाहरण- $10 \%$ ग्लूकोस (द्रव्यमान $\%$ ) $(\mathrm{w} / \mathrm{w})$ का अर्थ है कि 10 g ग्लूकोस को 90 g जल में घोलकर 100 g विलयन बनाया गया है। द्रव्यमान प्रतिशत का उपयोग रासायनिक उद्योगों के अनुप्रयोगों में किया जाता है। जैसे व्यावसायिक ब्लीचिंग विलयन का जल में 3.62 द्रव्यमान प्रतिशत सोडियम हाइपोक्लोराइट होता है।
(ii) मोल अंश या मोल भिन्न या मोल प्रभाज (Mole Fraction) (x) —एक मिश्रण में उपस्थित किसी अवयव का मोल अंश मिश्रण में उस अवयव के मोल तथा मिश्रण में उपस्थित सभी अवयवों के कुल मोलों का अनुपात होता है। अत; मिश्रण में किसी अवयव का मोल अंश

$$
\mathrm{x}=\frac{\text { अवयव के मोलों की संख्या }}{\text { सभी अवयवों के कुल मोलों की संख्या }}
$$

उदाहरण-एक द्विअंगी विलयन में यदि अवयव A व B के मोल क्रमशः $\mathrm{n}_{\mathrm{A}}$ तथा $\mathrm{n}_{\mathrm{B}}$ हैं तो A व $B$ का मोल अंश होगा-

$$
\mathrm{x}_{\mathrm{A}}=\frac{\mathrm{n}_{\mathrm{A}}}{\mathrm{n}_{\mathrm{A}}+\mathrm{n}_{\mathrm{B}}} \text { तथा } \mathrm{x}_{\mathrm{B}}=\frac{\mathrm{n}_{\mathrm{B}}}{\mathrm{n}_{\mathrm{A}}+\mathrm{n}_{\mathrm{B}}}
$$

$i$ अवयवों वाले विलयन में-

$$
\mathrm{x}_{\mathrm{i}}=\frac{\mathrm{n}_{\mathrm{i}}}{\mathrm{n}_{1}+\mathrm{n}_{2}+\ldots \ldots+\mathrm{n}_{\mathrm{i}}}=\frac{\mathrm{n}_{\mathrm{i}}}{\sum \mathrm{n}_{\mathrm{i}}}
$$

दिए गए विलयन में उपस्थित सभी अवयवों के मोल अंशों का योग हमेशा इकाई होता है अर्थात्-

$$
\mathrm{x}_{1}+\mathrm{x}_{2}+\ldots \ldots \ldots \ldots+\mathrm{x}_{\mathrm{i}}=1
$$

जब A व B के द्रव्यमान $\mathrm{W}_{\mathrm{A}}$ तथा $\mathrm{W}_{\mathrm{B}}$ हों एवं इनके अणुभार क्रमशः $\mathrm{M}_{\mathrm{A}}$ तथा $\mathrm{M}_{\mathrm{B}}$ हों तो

A के मोल $\left(\mathrm{n}_{\mathrm{A}}\right)=\frac{\mathrm{W}_{\mathrm{A}}}{\mathrm{M}_{\mathrm{A}}}$ तथा

$$
\mathrm{B} \text { के मोल }=\frac{\mathrm{W}_{\mathrm{B}}}{\mathrm{M}_{\mathrm{B}}}
$$

मोल प्रतिशत $=$ मोल भिन्न $\times 100$
(iii) मोललता (Molality) (m) - 1000 ग्राम (1 kg) विलायक में उपस्थित विलेय के मोलों की संख्या को उस विलयन की मोललता कहते हैं।

$$
\begin{aligned}
& \text { मोललता }(\mathrm{m})=\frac{\text { विलेय के मोल }}{\text { विलायक का द्रव्यमान (किलोग्राम में) }} \\
& =\frac{\text { विलेय का भार (ग्राम में) }}{\text { विलेय का अणुभार } \times \text { विलायक का द्रव्यमान (किलोग्राम में) }}
\end{aligned}
$$

जब w ग्राम विलेय, W ग्राम विलायक में उपस्थित हो तो विलयन की मोललता

$$
\mathrm{m}=\frac{\mathrm{w} \times 1000}{\mathrm{M} . \mathrm{W} . \times \mathrm{W}}
$$

उदाहरण- $1.00 \mathrm{~mol} \mathrm{~kg}{ }^{-1}(1.00 \mathrm{~m}) \mathrm{KCl}$ विलयन का अर्थ है कि 1 mol KCl को 1 kg जल में घोला गया है।
(iv) पार्ट पर मिलियन ( ppm ) -किसी विलेय के भागों की संख्या जो विलयन के एक मिलियन $\left(10^{6}\right)$ भागों में उपस्थित होती है, उसे विलेय की ppm सान्द्रता कहते हैं।

जब विलयन में विलेय की अत्यन्त सूक्ष्म मात्रा उपस्थित होती है तो सांद्रता को पार्ट्स पर मिलियन (ppm) में प्रदर्शित किया जाता है।

पार्ट्स पर (प्रति) मिलियन

$$
=\frac{\text { विलेय के भागों की संख्या }}{\text { विलयन के कुल भागों की संख्या }} \times 10^{6}
$$

ppm (पार्ट्स पर मिलियन) सांद्रता को भी द्रव्यमान-द्रव्यमान, आयतन-आयतन तथा द्रव्यमान-आयतन में प्रदर्शित किया जा सकता है। एक लीटर $(1030 \mathrm{~g})$ समुद्री जल में $6 \times 10^{-3} \mathrm{~g}$ ऑक्सीजन $\left(\mathrm{O}_{2}\right)$ घुली होती है। इतनी कम सांद्रता को 5.8 g प्रति $10^{6} \mathrm{~g}$ समुद्री जल $(5.8 \mathrm{ppm})$ से व्यक्त किया जाता है। जल अथवा वायुमंडल में प्रदूषकों की सान्द्रता को प्राय : $\mu \mathrm{gmL}^{-1}$ अथवा ppm में प्रदर्शित किया जाता है।

नोट-ppb (Parts Per Billion) (पार्ट्स पर बिलियन) के लिए ppm में $10^{6}$ के स्थान पर $10^{9}$ प्रयुक्त किया जाएगा।

सान्द्रता का एक अन्य मात्रक आयतन प्रतिशत है।
आयतन प्रतिशत (Volume Percentage) V/V\% — किसी विलयन के 100 आयतन में घुले हुए विलेय के आयतनों की संख्या को आयतन प्रतिशत कहते हैं।

विलयन में किसी अवयव का आयतन $\%$

$$
=\frac{\text { विलेय का आयतन }}{\text { विलयन का कुल आयतन }} \times 100
$$

उदाहरण- $10 \%$ एथेनॉल (V/V) का अर्थ है कि 10 mL एथेनॉल को इतने जल में घोला जाता है कि विलयन का कुल आयतन 100 mL हो जाए।

उपयोग-एथिलीन ग्लाइकॉल का $\left(\mathrm{CH}_{2}-\mathrm{CH}_{2}\right), 35 \%(\mathrm{~V} / \mathrm{V})$ विलयन वाहनों के इंजन को ठंडा करने (हिमरोधी) के काम आता है। इस सांद्रता पर हिमरोधी, जल के हिमांक को $255.4 \mathrm{~K}\left(-17.6^{\circ} \mathrm{C}\right)$ तक कम कर देता है।
महत्त्वपूर्ण बिन्दु (Important Points) -
(i) विलयन की नॉर्मलता $(\mathrm{N})=\frac{\mathrm{W}}{\mathrm{EW}} \times \frac{\mathrm{d}}{\mathrm{W}} \times 1000$ $\mathrm{w}=$ विलेय का भार (ग्रामों में), $\mathrm{d}=$ विलयन का घनत्व $\mathrm{EW}=$ विलेय का तुल्यांकी भार, $\mathrm{W}=$ विलयन का द्रव्यमान इसी प्रकार विलयन की मोलरता-

$$
\mathrm{M}=\frac{\mathrm{W}}{\mathrm{M} . \mathrm{W}} \times \frac{\mathrm{d}}{\mathrm{~W}} \times 1000
$$

(ii) नॉर्मलता $(\mathbf{N})=$ मोलरता $(\mathrm{M}) \times \mathrm{n}$ गुणांक
n गुणांक ( n factor) भिन्न-भिन्न पदार्थों के लिए भिन्न-भिन्न होता है। जैसे-

अम्ल के लिए n गुणांक $=$ अम्ल की क्षारकता
क्षार के लिए $n$ गुणांक $=$ क्षार की अम्लता
(iii) मोलरता (M) तथा मोललता $(\mathbf{m})$ में सम्बन्ध-

$$
\begin{aligned}
\text { मोललता }(\mathrm{m}) & =\frac{\mathrm{M}}{\mathrm{~d}-\frac{\mathrm{MM}_{1}}{1000}} \\
\mathrm{M} & =\text { एक लीटर विलयन में उपस्थित विलेय के } \\
& \text { मोलों की संख्या } \\
\mathrm{d} & =\text { विलयन का घनत्व (ग्राम/मिली) } \\
\mathrm{M}_{1} & =\text { विलेय का मोलर द्रव्यमान } \\
\text { अथवा } \quad \mathrm{M} & =\mathrm{m}\left(\mathrm{~d}-\frac{\mathrm{MM}_{1}}{1000}\right)
\end{aligned}
$$

(iv) मोलरता (M) तथा विलेय के मोल अंश $\left(\mathrm{x}_{1}\right)$ में सम्बन्ध

$$
x_{1}=\frac{M}{M+\frac{1000 \mathrm{~d}-\mathrm{MM}_{1}}{\mathrm{M}_{2}}}
$$

$\mathrm{M}_{2}=$ विलायक का मोलर द्रव्यमान
(v) मोललता ( $\mathbf{m}$ ) तथा विलेय के मोल अंश $\left(\mathbf{x}_{1}\right)$ में सम्बन्ध

$$
\begin{aligned}
\mathrm{x}_{1} & =\frac{\mathrm{mM}_{2}}{1000+\mathrm{mM}_{2}} \\
\mathrm{M}_{2} & =\text { विलायक का मोलर द्रव्यमान }
\end{aligned}
$$

(vi) (i) मोलरता समीकरण $\mathrm{M}_{1} \mathrm{~V}_{1}=\mathrm{M}_{2} \mathrm{~V}_{2}$
(ii) नॉर्मलता समीकरण $\mathrm{N}_{1} \mathrm{~V}_{1}=\mathrm{N}_{2} \mathrm{~V}_{2}$
(iii) दो अम्लों या क्षारों को मिलाने पर

$$
\mathrm{MV}=\mathrm{M}_{1} \mathrm{~V}_{1}+\mathrm{M}_{2} \mathrm{~V}_{2}
$$

(iv) अम्ल में क्षार मिलाने पर $\mathrm{MV}=\mathrm{M}_{1} \mathrm{~V}_{1}-\mathrm{M}_{2} \mathrm{~V}_{2}$
$\mathrm{M}_{1}$ तथा $\mathrm{M}_{2}$ विलयन 1 व 2 की मोलरताएँ एवं $\mathrm{V}_{1}$ तथा $\mathrm{V}_{2}$ उनके आयतन हैं।
(v) इसी प्रकार
$\mathrm{NV}=\mathrm{N}_{1} \mathrm{~V}_{1}+\mathrm{N}_{2} \mathrm{~V}_{2}$
(vi)
$\mathrm{NV}=\mathrm{N}_{1} \mathrm{~V}_{1}-\mathrm{N}_{2} \mathrm{~V}_{2}$
$\mathrm{N}_{1}$ तथा $\mathrm{N}_{2}$ विलयन 1 व 2 की नॉर्मलताएँ तथा $\mathrm{V}_{1}$ व $\mathrm{V}_{2}$ उनके आयतन हैं।
(vii) $\mathrm{H}_{2} \mathrm{O}_{2}$ विलयन की आयतन सान्द्रता- $\mathrm{H}_{2} \mathrm{O}_{2}$ के विलयन का वियोजन निम्नलिखित प्रकार से होता है-

$$
2 \mathrm{H}_{2} \mathrm{O}_{2} \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}
$$

अतः इसकी सान्द्रता को आयतन सान्द्रता के रूप में व्यक्त किया जाता है।

एक आयतन $\mathrm{H}_{2} \mathrm{O}_{2}$ विलयन के वियोजन से मानक ताप व दाब (NTP या STP) पर प्राप्त ऑक्सीजन का आयतन इसकी आयतन सान्द्रता कहलाती है।

20 आयतन $\mathrm{H}_{2} \mathrm{O}_{2}$ का अर्थ है कि 1 आयतन $\mathrm{H}_{2} \mathrm{O}_{2}$ विलयन वियोजित होकर NTP पर 20 आयतन ऑक्सीजन देता है। अर्थात् 1 लीटर $\mathrm{H}_{2} \mathrm{O}_{2}$ विलयन के वियोजन से (NTP या STP) पर 20 लीटर $\mathrm{O}_{2}$ प्राप्त होगी।

$$
\begin{aligned}
& \mathrm{H}_{2} \mathrm{O}_{2} \text { की मोलरता }=\frac{\text { आयतन सान्द्रता }}{11.2} \\
& \mathrm{H}_{2} \mathrm{O}_{2} \text { को नॉर्मलता }=\frac{\text { आयतन सान्द्रता }}{5.6}
\end{aligned}
$$

उदाहरण 1.1. एथिलीन ग्लाइकॉल $\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}_{2}\right)$ के मोलअंश की गणना कीजिए यदि विलयन में $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}_{2}$ का $20 \%$ द्रव्यमान उपस्थित हो।

हल—माना कि कुल विलयन $=100 \mathrm{~g}$ है, तो विलयन में 20 g एथिलीन ग्लाइकॉल व 80 g जल होगा। $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}_{2}$ का आण्विक
द्रव्यमान $=(12 \times 2)+(1 \times 6)+(16 \times 2)=62 \mathrm{~g} \mathrm{~mol}^{-1}$
$\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}_{2}$ के $\mathrm{mol}=\frac{20 \mathrm{~g}}{62 \mathrm{~g} \mathrm{~mol}^{-1}}=0.322 \mathrm{~mol}$
जल के $\mathrm{mol}=\frac{80 \mathrm{~g}}{18 \mathrm{~g} \mathrm{~mol}^{-1}}=4.444 \mathrm{~mol}$

ग्लाइकॉल की मोल अंश $\left(\mathrm{x}_{\text {ग्लाइकॉल }}\right)$
$=\frac{\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}_{2} \text { के } \mathrm{mol}}{\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}_{2} \text { के } \mathrm{mol}+\mathrm{H}_{2} \mathrm{O} \text { के mol }}=\frac{0.322 \mathrm{~mol}}{0.322 \mathrm{~mol}+4.444 \mathrm{~mol}}$
$=\frac{0.322 \mathrm{~mol}}{4.766}$
$=0.0676=0.068$
इसी प्रकार,
जल का मोल अंश ( $\mathrm{x}_{\text {जल }}$ )

$$
=\frac{4.444 \mathrm{~mol}}{0.322 \mathrm{~mol}+4.444 \mathrm{~mol}}=\frac{4.444}{4.766}=0.932
$$

