According to the Latest Syllabus

Sanjiv ${ }^{\oplus}$

For the Students of Rajasthan Board of Secondary Education

Dr. R. Wadhwani

M.Sc., M.Phil., Ph.D.
D.K. Chouhan
M.Sc.

2025

```
Price : ₹ 480/-
```

Sanjiv Prakashan, Jaipur

- Publisher :

Sanjiv Prakashan

Dhamani Market, Chaura Rasta,
Jaipur-3
email : sanjeevprakashanjaipur@gmail.com
website : www.sanjivprakashan.com

- © Publisher
- Laser Typesetting:

Sanjiv Prakashan (DTP Department), Jaipur

- Printer :

Manohar Art Printers, Jaipur

* Every effort has been made to remove the mistakes and omissions in this book. In case of any suggestion or any error found, send an email or post a letter to us at the following address :
Email : sanjeevprakashanjaipur@gmail.com
Postal Address : Publication Department
Sanjiv Prakashan,
Dhamani Market, Chaura Rasta, Jaipur-302003
* Your suggestions shall be taken care of in our next edition.
* Though all the precautions have been taken in publishing this book yet for any mistake the author, publisher or printer is not liable. All disputes are subjected to Jaipur Jurisdiction only.
* © Rights are reserved. No part of this publication may be produced in any form, by photocopy, microfilm, xerography, recording or otherwise without the prior written permission of the publisher. Any breach will entail legal action and prosecution without further notice.

We are extremely pleased to present this book according to latest syllabus of NCERT. The book has been written in easy and simple language so that students may assimilate the subject easily. We hope that students will get benefited from it and teachers will appreciate our efforts. In comparison to other books available in market, this book has many such features which make it a unique book :

1. Theoretical subject-material is given in adequate and accurate description along with pictures.
2. The latest syllabus of NCERT is followed thoroughly.
3. Complete solutions of all the questions given at the end of the chapter in the textbook are given in easy language.
4. Topic wise summary is also given in each chapter for the revision of the chapter.
5. In every chapter, all types of questions that can be asked in the exam (Objective, Fill in the blanks, Very short, Short, Numerical and Long answer type questions) are given.
6. At the end of every chapter, multiple choice questions asked in various competitive exams are also given with solutions.

Valuable suggestions received from subject experts, teachers and students have also been given appropriate place in the book.

We wholeheartedly bow to the Almighty God, whose continuous inspiration and blessings have made the writing of this book possible.

We express our heartfelt gratitude to the publisher - Mr. Pradeep Vital and Manoj Mittal of Sanjiv Prakashan, all their staff, laser type center and printer for publishing this book in an attractive format on time and making it reach the hands of the students.

Although utmost care has been taken in publishing the book, human errors are still possible, hence, valuable suggestions are always welcome to make the book more useful.

In anticipation of cooperation!
Authors
Dr. R. Wadhwani
D.K. Chouhan

Contents

7. Integrals 1-134
8. Application of Integrals 135-155
9. Differential Equations 156-221
10. Vector Algebra 222-277
11. Three Dimensional Geometry 278-310
12. Linear Programming 311-325
13. Probability 326-363

INTEGRALS

-【. Chapter Overview

7.1 Introduction
7.2 The Constant of Integration
7.3 Theorems on Integration
7.4 Standard Formulae of Integration
7.5 Methods of Integration
7.6 Integrals of Some Particular Functions
7.7 Integration by Partial Fractions
7.8 Integration by Parts
7.9 Definite Integral
7.10 Fundamental Theorem of Calculus
7.11 Evaluation of Definite Integrals by Substitution
7.12 Some Properties of Definite Integrals

7.1 Introduction

* If we study the history of integral calculus, we will know that it was discovered to find the areas of plane regions bounded by lines and curves in the plane. Its concept was based on the limit of sum of a series in which the number of terms was infinite and each term tended to zero. We will study about it from this prospective in Chapter 8. Later it was seen that, integration is the inverse process of differentiation.
* In differential mathematics, we have to find the differential cofficient or derivative of a given function, whereas in integral mathematics, we have to find the function whose differential coefficient is given. Therefore, the process by which we have to find the function $\mathrm{F}(x)$ from a given function $f(x)$ whose differential coefficient $\frac{d}{d x}\{\mathrm{~F}(x)\}=$ Function $f(x)$, is called integration. Obviously, this process of integration is the inverse process of differentiation and it is also called anti-derivatives. i.e. if

$$
\frac{d}{d x}\{\mathrm{~F}(x)\}=f(x)
$$

then $\mathrm{F}(x)$ is called the integration of functoin $f(x)$ with respect to x. Symbolically it is represented as :
$\int f(x) d x=\mathrm{F}(x)$, where the symbol \int (which is an extended form of the English alphabet S , which is used for addition) is used for integration and the letter x in $d x$ expresses the variable with respect to which we have to integrate. The function $f(x)$ which we have to integrate is called integrand and is called the integral of $\mathrm{F}(x)$.
So,

$$
\int f(x) d x=\mathrm{F}(x)
$$

(For example :
(i) Since $\frac{d}{d x}(\sin x)=\cos x \quad \therefore \int \cos x d x=\sin x$
(ii) Since $\frac{d}{d x}(\tan x)=\sec ^{2} x \quad \therefore \int \sec ^{2} x d x=\tan x$
(iii)
$\frac{d}{d x}\left(\frac{x^{5}}{5}\right)=x^{4} \quad \therefore \int x^{4} d x=\frac{x^{5}}{5}$
$\frac{d}{d x}\left(\frac{e^{3 x}}{3}\right)=e^{3 x} \quad \therefore \int e^{3 x} d x=\frac{e^{3 x}}{3}$

7.2 The Constant of Integration

We know that the differentiation of any constant term is zero, i.e.

$$
\frac{d}{d x}(c)=0, \text { where } c \text { is a constant. }
$$

Now if $\quad \frac{d}{d x}\{\mathrm{~F}(x)\}=f(x)$
then $\frac{d}{d x}\{\mathrm{~F}(x)+c\}=\frac{d}{d x}\{\mathrm{~F}(x)\}+\frac{d}{d x}(c)$

$$
\begin{aligned}
& =f(x)+0 \\
& =f(x)
\end{aligned}
$$

So by definition of integration,

$$
\int f(x) d x=\mathrm{F}(x)+c
$$

There c is called the constant of integration and is independent from variable x. On putting different values of c, different integrals of the given function $f(x)$ are obtained, in which only constant term differs. So, $\mathrm{F}(x)$ $+c$ is called general integration of function $f(x)$.

* In general integration c is not constant. Due to uncertainty of c, it is also called indefinite integral.
Fer example :
(i) Since $\frac{d}{d x}(\tan x+c)=\sec ^{2} x$
$\therefore \int \sec ^{2} x d x=\tan x+c$
(ii) Since $\frac{d}{d x}\left(e^{x}+c\right)=e^{x}$

$$
\therefore \int e^{x} d x=e^{x}+c
$$

(iii) Since $\frac{d}{d x}(\sin x+c)=\cos x$
$\therefore \int \cos x d x=\sin x+c$

* Note : Students should practice to write the constant of integration at the end of each indefinite integral. It is added at the end after the process of integration. For convenience, we do not write it again and again.

7.3 Theorems on Integration

Theorem 1 : If constant of integration is removed then

$$
\frac{d}{d x}\left[\int f(x) d x\right]=f(x)
$$

Proof : Let

$$
\begin{equation*}
\frac{d}{d x}\{\mathrm{~F}(x)\}=f(x) \tag{1}
\end{equation*}
$$

then according to definition of integration,

$$
\begin{equation*}
\int f(x) d x=\{\mathrm{F}(x)+c\} \tag{2}
\end{equation*}
$$

where c is a constant.
On differentiating eq. (2) with respect to x, both sides

$$
\begin{aligned}
\frac{d}{d x}\left[\int f(x) d x\right] & =\frac{d}{d x}\{\mathrm{~F}(x)+c\} \\
& =\frac{d}{d x}\{\mathrm{~F}(x)\}+\frac{d}{d x}(c) \\
& =f(x)+0 \text { [From eq. (1)] } \\
\therefore \frac{d}{d x}\left[\int f(x) d x\right] & =f(x)
\end{aligned}
$$

Therefore this theorem proves that the process of integration, is the inverse process of differentiation.

* Theorem 2 : The integration of product of a constant and a function is equal to the product of constant and integral of the function.

$$
\text { i.e. } \quad \int k f(x) d x=k \int f(x) d x
$$

where k is a constant.

Proof : From the theorem of differential mathematics, we know that :

$$
\begin{aligned}
\frac{d}{d x}\left[k \int f(x) d x\right] & =k \frac{d}{d x}\left[\int f(x) d x\right] \\
& =k f(x)[\text { From theorem 1] }
\end{aligned}
$$

Thus according to definition of integration,

$$
\int k f(x) d x=k \int f(x) d x
$$

* Theorem 3 :

$$
\int\left\{f_{1}(x) \pm f_{2}(x)\right\} d x=\int f_{1}(x) d x \pm \int f_{2}(x) d x
$$

i.e. integral of sum or difference of two functions is equal to sum or difference of their integrals.
Proof :

$$
\begin{aligned}
\text { Let } & \begin{aligned}
\int f_{1}(x) d x & =\phi_{1}(x) \\
\text { and } & \\
& \text { so } \quad \ldots(1) \\
\frac{d}{d x}(x) d x & =\phi_{2}(x) \\
& =f_{1}(x) \text { and } \frac{d}{d x} \phi_{2}(x)=f_{2}(x) \\
\therefore \frac{d}{d x}\left\{\phi_{1}(x) \pm \phi_{2}(x)\right\} & =\frac{d}{d x} \phi_{1}(x) \pm \frac{d}{d x} \phi_{2}(x) \\
& =f_{1}(x) \pm f_{2}(x)
\end{aligned}
\end{aligned}
$$

Integrating,

$$
\phi_{1}(x) \pm \phi_{2}(x)=\int\left\{f_{1}(x) \pm f_{2}(x)\right\} d x
$$

or $\int f_{1}(x) d x \pm \int f_{2}(x) d x=\int\left\{f_{1}(x) \pm f_{2}(x)\right\} d x$
[From eqns (1) and (2)]

This theorem can also be used to find the integration of finite number of terms.
$\left.\therefore \int\left\{f_{1}(x) \pm f_{2}(x) \pm f_{3}(x)\right\} \pm \ldots \pm f_{n}(x)\right\} d x$
$=\int f_{1}(x) d x \pm \int f_{2}(x) d x \pm \int f_{3}(x) d x \pm \ldots \pm \int f_{n}(x) d x$
Thus the integration operation is distributed over a finite number of terms.

- Comment :

(1) This theorem is called the law of term- by-term integration.
(2) This rule does not necessarily apply to the integral of the sum of infinite terms.

* General form :
$\int a f_{1}(x) d x \pm \int b f_{2}(x) d x=a \int f_{1}(x) d x \pm b \int f_{2}(x) d x$

7.4 Standard Formulae of Integration

By simply using the definitions in the standard formulas of differential mathematics, the corresponding formulas for integration can be obtained. This is shown in the following table :

	Differentiation Formula	Corresponding Integration Formula
1.	$\frac{d}{d x}(c)=0, c$ is a constant	$\int 0 d x=c$, constant
2.	$\begin{aligned} & \frac{d}{d x}\left(x^{n}\right)=n x^{n-1}, n \neq 0 \\ & \text { or } \frac{d}{d x}\left(\frac{x^{n+1}}{n+1}\right)=x^{n}, n \neq-1 \end{aligned}$	$\begin{aligned} & \int n x^{n-1} d x=x^{n}+c, n \neq 0 \\ & \text { or } \int x^{n} d x=\frac{x^{n+1}}{n+1}+c, n \neq-1 \end{aligned}$
3.	$\frac{d}{d x}(\log \|x\|)=\frac{1}{x}, x \neq 0$	$\int \frac{1}{x} d x=\log \|x\|+c, x \neq 0$
4.	$\frac{d}{d x}\left(e^{x}\right)=e^{x}$	$\int e^{x} d x=e^{x}+c$
5.	$\frac{d}{d x}\left(\frac{a^{x}}{\log _{e} a}\right)=a^{x}, a>0, a \neq 1$	$\int a^{x} d x=\frac{a^{x}}{\log _{e} a}+c=a^{x} \log _{a} e+c, a>0, a \neq 1$
6.	$\frac{d}{d x}(\sin x)=\cos x$ where x is in radian	$\int \cos x d x=\sin x+c$ where x is in radian
7.	$\frac{d}{d x}(-\cos x)=\sin x$	$\int \sin x d x=-\cos x+c$
8.	$\frac{d}{d x}(\tan x)=\sec ^{2} x$	$\int \sec ^{2} x d x=\tan x+c$
9.	$\frac{d}{d x}(-\cot x)=\operatorname{cosec}^{2} x=\csc ^{2} x$	$\int \operatorname{cosec}^{2} x d x=\int \csc ^{2} x d x=-\cot x+c$
10.	$\frac{d}{d x}(\sec x)=\sec x \tan x$	$\int \sec x \tan x d x=\sec x+c$
11.	$\frac{d}{d x}(-\operatorname{cosec} x)=\operatorname{cosec} x \cot x$	$\int \operatorname{cosec} x \cot x d x=-\operatorname{cosec} x+c$
12.	$\frac{d}{d x}\left(\sin ^{-1} x\right)=\frac{d}{d x}(\arcsin x)=\frac{1}{\sqrt{1-x^{2}}},(\|x\|<1)$	$\int \frac{1}{\sqrt{1-x^{2}}} d x=\sin ^{-1} x+c=\arcsin x+c,(\|x\|<1)$

13.	$\frac{d}{d x}\left(-\cos ^{-1} x\right)=\frac{d}{d x}(-\arccos x)=\frac{1}{\sqrt{1-x^{2}}}$	$\int \frac{1}{\sqrt{1-x^{2}}} d x=-\cos ^{-1} x+c$
14.	$\frac{d}{d x}\left(\tan ^{-1} x\right)=\frac{d}{d x}(-\arctan x)=\frac{1}{1+x^{2}}$	$\int \frac{1}{1+x^{2}} d x=\tan ^{-1} x+c=\arctan x+c$
15.	$\frac{d}{d x}\left(-\cot ^{-1} x\right)=\frac{1}{1+x^{2}}$	$\int \frac{d x}{1+x^{2}}=-\cot ^{-1} x+C$
16.	$\frac{d}{d x}\left(\sec ^{-1} x\right)=\frac{1}{x \sqrt{x^{2}-1}}$	$\int \frac{d x}{x \sqrt{x^{2}-1}}=-\sec ^{-1} x+C$
17.	$\frac{d}{d x}\left(-\operatorname{cosec}^{-1} x\right)=\frac{1}{x \sqrt{x^{2}-1}}$	$\int \frac{d x}{x \sqrt{x^{2}-1}}=-\operatorname{cosec}^{-1} x+C$
18.	$\frac{d}{d x}\|x\|=\frac{\|x\|}{x}, x \neq 0$	$\int \frac{\|x\|}{x} d x=\|x\|+c,(x \neq 0)$

* Comment : Integration constant c should be added in all formulas given above.
* Abbreviated form : $\operatorname{cosec} x=\csc x$, arc $\sin =\sin ^{-1}$ etc.

SOLVED EXAMPLES

Example 1. Write an antiderivative for each of the following functions using the method of inspection :
(i) $\cos 2 x$
(ii) $3 x^{2}+4 x^{3}$
(Board Model Paper, 2022-23)
(iii) $\frac{1}{x}, x \neq 0$
(NCERT)
Sol. (i) Here we want to know the function whose derivative is $\cos 2 x$.
We know that

$$
\begin{aligned}
\frac{d}{d x}(\sin 2 x) & =2 \cos 2 x \\
\Rightarrow \quad \cos 2 x & =\frac{1}{2} \frac{d}{d x}(\sin 2 x) \\
& =\frac{d}{d x}\left(\frac{1}{2} \sin 2 x\right)
\end{aligned}
$$

So antiderivative of $\cos 2 x$ is $\frac{1}{2} \sin 2 x$.
(ii) Here we want to know the function whose derivative is $3 x^{2}+4 x^{3}$.

Now $\quad \frac{d}{d x}\left(x^{3}+x^{4}\right)=3 x^{2}+4 x^{3}$
So antiderivative of $3 x^{2}+4 x^{3}$ is $\left(x^{3}+x^{4}\right)$.
(iii) Here we want to know the function whose derivative is $\frac{1}{x}$.

So

$$
\frac{d}{d x}(\log x)=\frac{1}{x}, x>0
$$

and

$$
\begin{aligned}
\frac{d}{d x}[\log (-x)] & =\frac{1}{-x}(-1) \\
& =\frac{1}{x}, x>0
\end{aligned}
$$

On taking both simultaneously, we get

$$
\begin{gathered}
\frac{d}{d x}(\log |x|)=\frac{1}{x}, x \neq 0 \\
\int \frac{1}{x} d x=\log |x|,
\end{gathered}
$$

which is one of the antiderivative of $\frac{1}{x}$.
Example 2. Find the integration of the following :

$$
\int \frac{2 \cos x}{3 \sin ^{2} x} d x
$$

Sol. Here, $\int \frac{2 \cos x}{3 \sin ^{2} x} d x=\int \frac{2 \cos x}{3 \sin x \cdot \sin x} d x$

$$
\begin{aligned}
& =\frac{2}{3} \int \cot x \cdot \operatorname{cosec} x d x \\
& =-\frac{2}{3} \operatorname{cosec} x+c
\end{aligned}
$$

Ans.

Ex Example 3. Find the following integrals :
(i) $\int \frac{x^{3}-1}{x^{2}} d x$
(ii) $\int\left(x^{\frac{2}{3}}+1\right) d x$
(iii) $\int\left(x^{\frac{3}{2}}+2 e^{x}-\frac{1}{x}\right) d x$
(NCERT)
Sol. (i) Here

$$
\begin{aligned}
\int \frac{x^{3}-1}{x^{2}} d x & =\int\left(\frac{x^{3}}{x^{2}}-\frac{1}{x^{2}}\right) d x \\
& =\int x d x-\int x^{-2} d x(\text { using theorem } 3) \\
& =\left(\frac{x^{1+1}}{1+1}+c_{1}\right)-\left(\frac{x^{-2+1}}{-2+1}+c_{2}\right)
\end{aligned}
$$

Here c_{1} and c_{2} are integration constants.

$$
\begin{aligned}
& =\frac{x^{2}}{2}+c_{1}-\frac{x^{-1}}{-1}-c_{2} \\
& =\frac{x^{2}}{2}+\frac{1}{x}+c_{1}-c_{2} \\
& =\frac{x^{2}}{2}+\frac{1}{x}+c
\end{aligned}
$$

Where $c=c_{1}-c_{2}$ is a variable constant.
Note : From going forward we will write a constant of integration only in the last answer.
(ii) Here

$$
\begin{aligned}
\int\left(x^{\frac{2}{3}}+1\right) d x & =\int x^{\frac{2}{3}} d x+\int d x \\
& =\frac{x^{\frac{2}{3}+1}}{\frac{2}{3}+1}+x+c \\
= & \frac{3}{5} x^{\frac{5}{3}}+x+c
\end{aligned}
$$

Ans.
(iii) Here $\int\left(x^{\frac{3}{2}}+2 e^{x}-\frac{1}{x}\right) d x$

$$
=\int x^{\frac{3}{2}} d x+\int 2 e^{x} d x-\int \frac{1}{x} d x
$$

$$
=\int x^{\frac{3}{2}} d x+2 \int e^{x} d x-\int \frac{1}{x} d x
$$

$$
=\frac{x^{\frac{3}{2}+1}}{\frac{3}{2}+1}+2 e^{x}-\log |x|+c
$$

$$
=\frac{2}{5} x^{\frac{5}{2}}+2 e^{x}-\log |x|+c
$$

Ans.
Example 4. Find the following integrals :
(i) $\int(\sin x+\cos x) d x$
(ii) $\int \operatorname{cosec} x(\operatorname{cosec} x+\cot x) d x$
(iii) $\int \frac{1-\sin x}{\cos ^{2} x} d x$
(NCERT)
Sol. (i) Here

$$
\int(\sin x+\cos x) d x
$$

$=\int \sin d x+\int \cos x d x$

$$
=-\cos x+\sin x+c
$$

Ans.
(ii) Here $\int \operatorname{cosec} x(\operatorname{cosec} x+\cot x) d x$

$$
\begin{aligned}
& =\int\left(\operatorname{cosec}^{2} x+\operatorname{cosec} x \cot x\right) d x \\
& =\int \operatorname{cosec}^{2} x d x+\int \operatorname{cosec} x \cot x d x \\
& =-\cot x-\operatorname{cosec} x+c \quad \text { Ans. }
\end{aligned}
$$

(iii) Here

$$
\begin{aligned}
\int \frac{1-\sin x}{\cos ^{2} x} d x & =\int\left(\frac{1}{\cos ^{2} x}-\frac{\sin x}{\cos ^{2} x}\right) d x \\
& =\int \frac{1}{\cos ^{2} x} d x-\int \frac{\sin x}{\cos x \cdot \cos x} d x \\
& =\int \sec ^{2} x d x-\int \tan x \cdot \sec x d x \\
& =\tan x-\sec x+c \quad \text { Ans. }
\end{aligned}
$$

[TM Example 5. Find the antiderivative F of f defined by $f(x)=4 x^{3}-6$, where $\mathrm{F}(0)=3$.
(NCERT)
Sol. The antiderivative of $f(x)$ is $x^{4}-6 x$ since $\frac{d}{d x}\left(x^{4}-6 x\right)$ $=4 x^{3}-6$, Therefore, the antiderivative F is given by $\mathrm{F}(x)=x^{4}-6 x+c$, where c is a constant.
Given that, $\mathrm{F}(0)=3$, which gives,

$$
3=0-6 \times 0+c
$$

