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Rational Numbers
1.1. Introduction

In previous classes, we began our study of numbers with counting numbers 
or natural numbers, i.e. 1, 2, 3, 4...... By including 0 to natural numbers, we got 
whole numbers, i.e. 0, 1, 2, 3, 4.......

The negative of natural numbers were put together with whole numbers to 
get integers, i.e. ........ – 4, – 3, – 2, – 1, 0, 1, 2, 3, ........

In class VII, the concept of rational numbers was introduced and addition, 
subtraction, multiplication and division on the rational numbers were defined. 
In this chapter, we will learn about various properties of these operations on the 
rational numbers.

 Rational Number
A number of the form q

p
 or a number which can be expressed in the form q

p
, 

where p and q are integers and q ≠ 0, is called a rational number.

Example : Each of the numbers , ,8
5

14
3

15
–

 and 0 are  rational numbers.

Positive rational number : A rational number is said to be positive if its 
numerator and denominator are of same signs.

Example : 14
3

 and 15
7

–
–

 are positive rational numbers.

Negative rational number : A rational number is said to be negative if its 
numerator or denominator are of opposite signs.

Example :  9
2–

 and 7
5

–  are negative rational numbers.

Equivalent rational numbers :  If q
p

 is a rational number and m is a       
non-zero integer, then

                                 q
p

q m
p m

×
×= ,
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q m
p m

×
×

 is a rational number equivalent to q
p

.

Example :  
( ) ( ) ( )

.....5
3

5 2
3 2

5 3
3 3

5 4
3 4–

×
– ×

×
– ×

×
– ×= = = =

\ , , ,5
3

10
6

15
9

20
12– – – –

, etc. are equivalent rational numbers.

Standard form of a rational number : A rational number b
a

 is said to be in standard 

form if a and b are integers having no common divisor other than 1 and b is positive.

Example : Express 56
21

–  in standard form.

Solution :  56
21

56 1
21 1

56
21

– – × –
× – –= =

The greatest common divisor of 21 and 56 is 7

\ 
( )

56
21

56 7
21 7

8
3– – –

'

'
= =

Hence, 8
3–

 is the standard form of number 56
21

– .

 Comparison of Rational Numbers
(i)  Every positive rational number is greater than 0.
(ii) Every negative rational number is less than 0.

Example : Which of the numbers 4
3

–  or 6
5–

 is greater?

Solution : First we write each of the given numbers with positive denominator.

 One number  = ( )
( )

4
3

4 1
3 1

4
3

– – × –
× – –= =

 The other number  = 6
5–

LCM of 4 and 6 = 12

\ 
( )

4
3

4 3
3 3

12
9–

×
– × –= =  and 

( )
6
5

6 2
5 2

12
10–

×
– × –= =

Since, – 9 > – 10 ⇒ 12
9

12
10– –

>

Hence, 4
3

6
5– –

>  or 4
3

6
5

–
–

> ,

i.e. 4
3

–  is greater.

Example : Arrange the numbers , ,5
3

10
7

8
5–

–
–

 in ascending order.

Solution : First we write each of the given numbers with positive denominator.
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We have, ( ) ( )
( )

10
7

10 1
7 1

10
7

– – × –
× – –= =

Thus, the given numbers are ,5
3

10
7– –

 and 8
5–

. 

LCM of 5, 10 and 8 is 40.

Now, 
( )

5
3

5 8
3 8

40
24–

×
– × –= = ; 

( )
10

7
10 4

7 4
40
28–

×
– × –= =

and, 
( )

8
5

8 5
5 5

40
25–

×
– × –= =

Clearly, 40
28

40
25

40
24– – –

< <

Hence, 10
7

8
5

5
3– – –

< < , i.e. 10
7

8
5

5
3

–
– –

< < .

1.2. Properties of Rational Numbers
(i) Addition of Rational Numbers

If two rational numbers are to be added, we should convert each of them into a rational 
number with positive denominator.

Case I : When denominators are same :

In this case, b
a

b
c

b
a c+ =

+c ^m h

Example :  Find the sum (i) 7
4

7
5– + , (ii) 13

8
13
5

–
+ .

Solution : 

(i) 
( )

7
4

7
5

7
4 5

7
1– –+ =

+
=

(ii) ( ) ( )
( )

13
8

13 1
8 1

13
8

– – × –
× – –= =

Now, 
( )

13
8

13
5

13
8 5

13
3– – –+ =

+
=

Case II : When denominators are unequal :
In this case first we will make the denominators same by expressing these numbers 

with the LCM of the denominators as a common denominator. Now, we add these numbers 
as shown in case I.

Example : Find the sum 16
9

12
5– + .

Solution :  LCM of 16 and 12 = 48

\                                              
( )

16
9

12
5

48
3 9 4 5– × – ×+ =

+

  = 
( )

48
27 20

48
7– –+

=



Sanjiv Refresher Maths Class-VIII4

 Properties of Addition of Rational Numbers
Property 1 : Closure property : The sum of two rational numbers is always a rational 

number. If b
a

 and d
c

 are two rational numbers, then b
a

d
c+c m  is also a rational number.

Example : Consider 3
4–

 and 5
3

 are rational numbers, then 3
4

5
3

15
20 9– –+ =

+c m  = 15
11–

 
is also a rational number.

Property 2 : Commutative property : For any two rational numbers b
a

 and d
c

                                                  b
a

d
c

d
c

b
a+ = +c cm m .

Example : For b
a

7
3= ; d

c
8
5–=

 b
a

d
c+c m  = 

( )
7
3

8
5–+' 1  = 

( )
56

24 35–+( 2  = 56
11–

Now, d
c

b
a+c m  = 8

5
7
3– +c m

  = 56
35 24

56
11– –+

=

Thus,                                         b
a

d
c

d
c

b
a+ = +c cm m .

Property 3 : Associative property : While adding three rational numbers, they can 
be grouped in any order. Thus, for any three rational numbers b

a
, d

c
, f

e
,

we have, b
a

d
c

f
e

b
a

d
c

f
e+ + = + +c dm n .

Example : For ,b
a

d
c

3
2

6
5–= =  and f

e
2
1= . 

we have  b
a

d
c

f
e+ +c m  = 3

2
6
5

2
1– + +c m( 2

  = 
6

4 5
2
1

6
1

2
1– +

+ = +d n( '2 1

                          = 
6

1 3
6
4

3
2+

= =d n

                  b
a

d
c

f
e+ +d n  = 3

2
6
5

2
1– + +c m( 2

  = 3
2

6
5 3

3
2

6
8– –+

+
= +d n( '2 1

  = 
6

4 8
6
4

3
2– +

= =d n

Thus, b
a

d
c

f
e

b
a

d
c

f
e+ + = + +c dm n .
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Property 4 : Existence of additive identity : If 0 is added to any rational number, 
then always of rational number itself.

b
a

b
a

b
a

0 0+ = = + , b
a

Hence, 0 is called the additive identity for rational numbers.

Example : 7
3

0 7
3

0 7
3+ = = +c cm m

 (ii) Subtraction of Rational Numbers
If b

a
 and d

c
 are two rational numbers, then subtracting d

c
 means adding additive 

inverse of d
c

 to b
a

 correct it.

Thus, b
a

d
c

b
a

d
c

–
–= + c m

Example : Subtract 2
3

 from 7
5

.

Solution : 
( )

7
5

2
3

14
10 21

14
10 21

14
11– – – –+ =

+
= =c m

 Properties of Subtraction of Rational Numbers
Property 1 : Closure property : If b

a
 and d

c
 are two rational numbers then b

a
 – d

c
 

is also a rational number. 

Example : If 2
1  and 7

3-  are rational numbers, then

 2
1

7
3

–
–c m( 2  = 2

1
7
3+' 1

  = 
14

7 6+( 2  = 14
13

 is also a rational number.

Property 2 : Commutative property : For any two rational numbers b
a

 and d
c

,

 b
a

d
c

–c m  ≠ d
c

b
a

–c m
Hence, rational numbers are not commutative under subtraction.

Example : For ,b
a

d
c

3
2

6
1= = ,

 b
a

d
c

–  = 3
2

6
1–+  = 6

4 1
6
3

2
1– = =

 d
c

b
a

–  = 6
1

3
2

6
1 4

6
3

2
1– – – –+ = = =

Thus, b
a

d
c

–c m  ≠ d
c

b
a

–c m

Property 3 : Associative property : For any three rational numbers b
a

, d
c

 and f
e

,

 b
a

d
c

–c m  – f
e

 ≠ b
a

 – d
c

f
e

–d n .

Hence, rational numbers are not associative under subtraction.
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(iii) Multiplication of Rational Numbers
For any two rational numbers b

a
 and d

c
, we have

 b
a

d
c

×c m  = ( )
( )
b d
a c
×
×

Example : Multiply (i) ×7
3

9
5–

, (ii) ×13
11

5
2–

.

Solution : (i) 
( )

7
3

9
5

7 9
3 5

63
15

21
5–

× ×
– × – –= = =

(ii) 
( )

13
11

5
2

13 5
11 2

65
22–

× ×
– × –= =

Properties of Multiplication of Rational Numbers
Property 1 : Closure property : The product of two rational numbers is always a 

rational number.

If b
a

 and d
c

 are two rational numbers then b
a

d
c

×c m  is also a rational number.

Example : For two rational numbers 2
1

 and 7
3

.

 2
1

7
3

2 7
1 3

14
3

× ×
×= =  is also a rational number.

Property 2 : Commutative property : For any two rational numbers b
a

 and d
c

 b
a

d
c

×c m  = d
c

b
a

×c m .

Example : Let us consider b
a

6
5=  and d

c
7
4–= , then b

a
d
c

6
5

7
4

× ×
–=

  = 
( )

6 7
5 4

42
20

21
10

×
× – – –= =

 Also,                                             
( )

d
c

b
a

7
4

6
5

7 6
4 5

42
20

21
10

×
–

× ×
– × – –= = = =

Hence,  b
a

d
c

×c m  = d
c

b
a

×c m

Property 3 :  Associative property : For any three rational numbers b
a

, d
c

 and f
e

, 
we have, 

                                            b
a

d
c

f
e

b
a

d
c

f
e

× × × ×=c dm n .

Example :  Let us consider ,b
a

d
c

2
5

4
7– –= =  and f

e
3
1= , we have

 ×b
a

d
c

f
e

×c m  = 
( ) ( )

2
5

4
7–

×
–' 1  × 3

1
 = 8

35
3
1

×c m  = 24
35
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