NCERT के पूर्णतया संशोधित नवीनतम् पाठ्यक्रम पर आधारित

(i)

संजीव[®]

भौतिक विज्ञानं कक्षा-11 (भाग-2)

माध्यमिक शिक्षा बोर्ड, राजस्थान के विद्यार्थियों के लिए

प्रो. जे.एस. सोखी

पूर्व संयुक्त निदेशक कॉलेज शिक्षा, जयपुर (राजस्थान) लेखक :

प्रो. सी.एम. सोनी पूर्व विभागाध्यक्ष, भौतिक शास्त्र विभाग डी.ए.वी. कॉलेज, अजमेर (राजस्थान)

मुल्य : ₹ 400/-

डॉ. मीनल बाफना विभागाध्यक्ष, भौतिक शास्त्र अग्रवाल स्नातकोत्तर महाविद्यालय, जयपुर

जयपुर-3

•	प्रकाशक :
	संजीव प्रकाशन
	धामाणी मार्केट, चौड़ा रास्ता,
	जयपुर-3
	email : sanjeevprakashanjaipur@gmail.com website : www.sanjivprakashan.com
•	© प्रकाशकाधीन
•	मूल्य : ₹ 400.00
•	लेजर कम्पोजिंग : संजीव प्रकाशन (D.T.P. Department), जयपुर
•	मुद्रक : मनोहर आर्ट प्रिन्टर्स, जयपुर ****
*	 इस पुस्तक में त्रुटियों को दूर करने के लिए हर संभव प्रयास किया गया है। किसी भी त्रुटि के पाये जाने पर अथवा किसी भी तरह के सुझाव के लिए आप हमें निम्न पते पर email या पत्र भेजकर सूचित कर सकते हैं— email : sanjeevprakashanjaipur@gmail.com पता : प्रकाशन विभाग संजीव प्रकाशन
	धामाणी मार्केट, चौड़ा रास्ता, जयपुर
	आपके द्वारा भेजे गये सुझावों से अगला संस्करण और बेहतर हो सकेगा।

- यद्यपि इस पुस्तक को प्रकाशित करने में सभी सावधानियों का पालन किया गया है तथापि इस पुस्तक में प्रकाशित किसी त्रुटि के प्रति तथा इससे होने वाली किसी भी क्षति के लिए लेखक, प्रकाशक, संपादक तथा मुद्रक किसी भी रूप में जिम्मेदार नहीं हैं।
- 🔹 सभी प्रकार के विवादों का न्यायिक क्षेत्र ' जयपुर ' होगा।

भूमिका

NCERT के नवीनतम पाठ्यक्रम के अनुसार कक्षा 11 के विद्यार्थियों के लिए भौतिक विज्ञान भाग-2 की इस अद्वितीय पुस्तक के संशोधित एवं परिवर्धित संस्करण को प्रस्तुत करते हुए मुझे अपार हर्ष हो रहा है। प्रस्तुत पुस्तक सरल एवं सहज भाषा में लिखी गई है ताकि छात्र विषय को आसानी से आत्मसात् कर सकें। यह पुस्तक कक्षा 11 के विद्यार्थियों के लिए तो उपयोगी है ही, साथ ही मेडिकल तथा इंजीनियरिंग की विभिन्न प्रवेश परीक्षाओं की तैयारी कर रहे विद्यार्थियों के लिए भी अत्यन्त उपयोगी साबित होगी। आशा है कि विद्यार्थी वर्ग इससे लाभान्वित होगा तथा शिक्षक वर्ग मेरे इस प्रयास को सराहेगा। बाजार में उपलब्ध अन्य पुस्तकों की तुलना में इस पुस्तक की अनेक ऐसी विशेषताएँ हैं जिनके कारण यह एक अद्वितीय पुस्तक है—

- विषय-वस्तु की भाषा-शैली को सरल-सहज व पूर्ण रूप से राजस्थान राज्य के अनुरूप रखा गया है जिससे कि विद्यार्थी ज्ञान को आसानी से समाहित कर सकें।
- 2. विभिन्न गणितीय सूत्रों का समावेश।
- 3. महत्त्वपूर्ण तथ्यों का समावेश।
- पुस्तक में आवश्यकतानुसार आंकिक प्रश्न तथा हल सहित उदाहरण, प्रत्येक विषय-वस्तु के साथ दिये गये हैं, जिससे विद्यार्थी भौतिक विज्ञान के सिद्धान्तों के अनुप्रयोगों को आसानी से समझ सकें।
- 5. NCERT के सभी प्रश्नों का हल पुस्तक के प्रत्येक अध्याय में समायोजित है।
- प्रत्येक अध्याय के अन्त में महत्त्वपूर्ण प्रश्न (वस्तुनिष्ठ, रिक्तस्थान, अतिलघूत्तरात्मक, लघूत्तरात्मक, निबन्धात्मक एवं आंकिक) हल सहित दिये गये हैं, जिससे विद्यार्थी में आत्मविश्वास उत्पन्न हो।
- प्रत्येक अध्याय के अन्त में विभिन्न प्रतियोगी परीक्षाओं में पूछे गये बहुविकल्पीय प्रश्नों को भी हल सहित दिया गया है।
- 8. पुस्तक में एस.आई. (S.I.) मात्रक प्रयुक्त किये गये हैं।

पुस्तक का नवीनतम संशोधित संस्करण नये कलेवर में प्रस्तुत किया जा रहा है।इसमें विषय विशेषज्ञों, शिक्षकों तथा पाठकों से प्राप्त बहुमूल्य सुझावों को भी उचित स्थान दिया गया है।

हमारे द्वारा भरसक प्रयास किया गया है कि यह पुस्तक विद्यार्थियों, अध्यापकों की आवश्यकताओं की पूर्ति करेगी तथा उनके लिए लाभदायक सिद्ध होगी।

हम उन सभी विद्वानों, लेखकों के आभारी हैं जिनसे हमें निरन्तर प्रेरणा एवं मार्गदर्शन प्राप्त होते रहे हैं।

इस पुस्तक के प्रकाशन हेतु हम संजीव प्रकाशन के भी अत्यन्त आभारी हैं जिनके अथक तथा सतत प्रयासों से इस पुस्तक का प्रकाशन हो पाया है।

लेखक अपने परिश्रमपूर्ण प्रयास को तभी सफल मानेंगे जब यह पुस्तक सम्बन्धित छात्रों के लिए अधिक से अधिक लाभदायक सिद्ध होगी। प्रस्तुत पुस्तक को और अधिक उपयोगी बनाने हेतु शिक्षकों एवं पाठकगण के बहुमूल्य सुझावों का सहर्ष स्वागत किया जायेगा। अत: हम उनके आभारी रहेंगे।

> लेखक प्रो. जे.एस. सोखी प्रो. सी.एम. सोनी डॉ. मीनल बाफना

विषय-सूची

8.	ठोसों के यांत्रिक गुण	
	(Mechanical Properties of Solids)	1-33
9.	तरलों के यांत्रिकी गुण	
	(Mechanical Properties of Fluids)	34 - 91
10.	द्रव्य के तापीय गुण	
	(Thermal Properties of Matter)	92-146
11.	ऊष्मागतिको	
	(Thermodynamics)	147 - 192
12.	अणुगति सिद्धांत	
	(Kinetic Theory)	193-234
13.	दोलन	
	(Oscillations)	235-289
14.	तरंगें	
	(Waves)	290-340

ठोसों के यांत्रिक गुण

भौतिक विज्ञान भाग-2 (कक्षा 11)

ठोसों के यांत्रिक गुण (Mechanical Properties of Solids)

- 8.1 भूमिका (Introduction)
 - 8.1.1 प्रत्यास्थ तथा सुघट्य वस्तुएँ (Elastic and Plastic Bodies)
- 8.2 प्रतिबल एवं विकृति (Stress and Strain)
 8.2.1 प्रतिबल (Stress)
 8.2.2 विकृति (Strain)
- 8.3 हुक का नियम (Hooke's Law)
- 8.4 प्रतिबल विकृति वक्र (Stress Strain Curve)
- 8.5 प्रत्यास्थता गुणांक (Coefficients of Elasticity)
 - 8.5.1. यंग का प्रत्यास्थता गुणांक (Young's Modulus of Elasticity)
 - 8.5.2 अपरूपता या दूढ़ता गुणांक (Modulus or Rigidity)
 - 8.5.3 आयतन प्रत्यास्थता गुणांक (Bulk Modulus of Elasticity)
 - 8.5.4 प्वासों अनुपात (Poisson's Ratio)
 - 8.5.5 Y, K, η तथा σ में सम्बन्ध (Relation between Y, K, η and $\sigma)$
 - 8.5.6 तनित तार में प्रत्यास्थ स्थैतिक ऊर्जा (Elastic Potential Energy in Stretched Wire)
- 8.6 द्रव्यों के प्रत्यास्थ व्यवहार के अनुप्रयोग (Applications of Elastic Behaviour of Matter)

8.1 भूमिका (Introduction)

रबर की पट्टी को खींचने पर हम देखते हैं कि खींचने पर पट्टी की लम्बाई में वृद्धि होती है तथा ज्यों ही बल हटाते हैं इसकी लम्बाई घटकर वापस प्रारम्भिक लम्बाई के बराबर हो जाती है। इस्पात, सोना, चाँदी, ताँबा आदि के तारों को भी खींचने पर इनकी लम्बाई में वृद्धि होती है तथा बल हटाने पर ये वापस प्रारम्भिक लम्बाई ग्रहण कर लेते हैं।

किसी वस्तु पर आरोपित वह बाहरी बल जिसके कारण वस्तु के आकार या आकृति या दोनों में परिवर्तन होता है, विरूपक बल (Deforming force) कहलाता है। विरूपक बल को हटाने पर वस्तु फिर अपना प्रारम्भिक आकार अथवा रूप ले लेती है। जिस वस्तु में यह गुण पाया जाता है उसे प्रत्यास्थ (Elastic) वस्तु कहते हैं तथा पदार्थ के इस गुण को प्रत्यास्थता (Elasticity) कहते हैं। अत: प्रत्यास्थता किसी वस्तु के पदार्थ का वह गुण है जिसके कारण वस्तु किसी विरूपक बल के द्वारा उत्पन्न आकार अथवा रूप के परिवर्तन का विरोध करती है और जैसे ही विरूपक बल हटा लिया जाता है वस्तु अपनी पूर्व अवस्था को प्राप्त कर लेती है।

8.1.1 प्रत्यास्थ तथा सुघट्य वस्तुएँ (Elastic and Plastic Bodies)

अध्यार

जो वस्तुयें विरूपक बल के हटाने से अपनी पूर्व अवस्था को पूर्णत: प्राप्त कर लेती हैं उन्हें पूर्ण प्रत्यास्थ (Perfectly elastic) कहते हैं। जैसे-क्वार्ट्ज, फॉस्फर कांसा (phosphor bronze) आदि। इसके विपरीत जो वस्तुयें विरूपक बल (Deforming force) को हटा लेने पर अपनी पूर्वावस्था में नहीं लौटती हैं बल्कि सदैव के लिये विरूपित हो जाती हैं उन्हें प्लास्टिक या पूर्ण सुघट्य (Perfectly Plastic) कहते हैं। जैसे-मोम का टुकड़ा, गीली मिट्टी आदि। वैसे प्रकृति में ऐसा कोई पदार्थ नहीं है जो पूर्णत: प्रत्यास्थ हो। एक निश्चित सीमा तक के बल के लिए पदार्थों या वस्तुओं को पूर्णत: प्रत्यास्थ माना जा सकता है।

अभियांत्रिकी अनुप्रयोगों में द्रव्यों के प्रत्यास्थ व्यवहार की जानकारी बेहद महत्त्वपूर्ण है। पदार्थ का प्रत्यास्थ व्यवहार यह निर्धारित करता है कि पदार्थ तनन बल के अधीन कैसा व्यवहार करेगा। उदाहरण के लिए, भवन

• भौतिक विज्ञान भाग-2 (कक्षा-11)

निर्माण के दौरान इस्पात, कंक्रीट, रबर जैसे विभिन्न उपयोग में आने वाले पदार्थों के प्रत्यास्थ व्यवहार की जानकारी अनुरूप उनका प्रयोग निर्धारित किया जाता है। पुल, स्वचालित वाहन, वायुयान इत्यादि की सुरक्षित एवं भरोसेमंद संरचनाओं के डिजाइन के लिए यह व्यवहार जानना अत्यन्त आवश्यक हो जाता है। अभियंताओं के लिए ये प्रश्न हैं कि क्या हम ऐसी विमान संरचना बना सकते हैं जो 500 यात्रियों के भार को झेल सके एवं मजबूत और हल्का हो? क्या ऐसे कृत्रिम अंगों को बनाया जा सकता है जो अपेक्षाकृत बेहद हल्के हों किन्तु अधिक मजबूत हों? काँच जैसे पदार्थ भंगुर किन्तु पीतल जैसे पदार्थ भंगुर नहीं होते हैं, क्यों? रेल की पटरियों का आकार अंग्रेजी वर्णमाला के अक्षर I के समान क्यों होता है? इन सभी विशिष्ट अनुप्रयोगों में सर्वोत्तम पदार्थ व उनके डिजाइन का चयन करने के लिए यह जानकारी अत्यन्त महत्त्वपूर्ण है कि अपेक्षाकृत साधारण प्रकार के बल/भार (load) भिन्न-भिन्न पदार्थों को किस प्रकार से विरूपित करते हैं। यह अध्याय टोसों के प्रत्यास्थ व्यवहार और यांत्रिक गुणों को समझने के लिए महत्त्वपूर्ण है।

8.2 प्रतिबल एवं विकृति	
(Stress and Strain)	

प्रत्यास्थ वस्तुयें विरूपक बल (Deforming force) के हटा लेने पर अपनी पूर्व अवस्था को प्राप्त कर लेती हैं। परन्तु वस्तुओं में यह गुण विरूपक बल के एक विशेष मान तक ही रहता है। यदि विरूपक बल का मान बढ़ाते जायें तो एक अवस्था ऐसी आयेगी जबकि बल को हटा लेने पर वस्तु अपनी पूर्व अवस्था में नहीं लौटेगी। उदाहरण के लिये, यदि किसी दृढ़ आधार से लटके तार के निचले सिरे पर भार लटकाया जाये तो तार लम्बाई में बढ़ जाता है। भार को हटा लेने पर तार पुन: अपनी प्रारम्भिक लम्बाई में आ जाता है। यदि लटकाये गये भार को धीरे-धीरे बढ़ाया जाये तो एक अवस्था ऐसी आ जाती है कि भार हटा लेने पर तार अपनी प्रारम्भिक लम्बाई में नहीं लौटता बल्कि उसकी लम्बाई सदैव के लिये बढ़ जाती है। इस प्रकार, उसका प्रत्यास्थता का गुण नष्ट हो जाता है। किसी पदार्थ पर लगाये गये विरूपक बल की उस सीमा को जिसके अन्तर्गत पदार्थ का प्रत्यास्थता का गुण विद्यमान रहता है, उस पदार्थ की 'प्रत्यास्थता की सीमा' (Elastic Limit) कहते हैं। 8.2.1 प्रतिबल (Stress)

जब किसी वस्तु पर विरूपक बल लगाया जाता है तो वस्तु विकृत होती है, परन्तु उसी समय प्रत्यास्थता के गुण के कारण वस्तु में बाह्य बल (विरूपक बल) के विपरीत दिशा में एक आन्तरिक बल उत्पन्न हो जाता है, जो वस्तु को पूर्वावस्था में लाने का प्रयास करता है। वस्तु के अनुप्रस्थ काट के एकांक क्षेत्रफल पर कार्य करने वाले आंतरिक प्रत्यानयन बल (Restoring force) को प्रतिबल कहते हैं।

साम्यावस्था की स्थिति में प्रत्यानयन बल (Restoring force) बाह्य विरूपक बल के ठीक बराबर परन्तु विपरीत होता है।

यदि किसी वस्तु के अनुप्रस्थ काट क्षेत्रफल A पर बाह्य बल F लगाया गया हो तो, साम्यावस्था में,

प्रतिबल का मात्रक न्यूटन/मीटर² तथा विमा M¹L⁻¹T⁻² है। किसी वस्तु में उत्पन्न प्रतिबल इस बात पर निर्भर करता है कि उस पर बाह्य बल किस प्रकार लगाया गया है। अत: इस आधार पर प्रतिबल तीन प्रकार के होते हैं–

(i) अनुदैर्घ्य प्रतिबल (अभिलम्ब प्रतिबल) (ii) आयतन प्रतिबल (iii) अपरूपण (स्पर्शीय) प्रतिबल। (i) अनुदैर्घ्य प्रतिबल — जब प्रतिबल वस्तु की सतह के लम्बरूप होता है तो उसे अनुदैर्घ्य प्रतिबल कहते हैं या वस्तु के एकांक क्षेत्रफल पर कार्य करने वाले बल को अनुदैर्घ्य प्रतिबल कहते हैं। इस प्रकार का प्रतिबल वस्तु की लम्बाई या आयतन में विकृति के कारण उत्पन्न होता है। अनुदैर्घ्य प्रतिबल दो प्रकार का होता है–

(a) तनन (विस्तार) प्रतिबल (b) संपीडन प्रतिबल।

(a) तनन प्रतिबल (Tensile Stress)—वस्तु की लम्बाई या आयतन में वृद्धि होने पर उत्पन्न अनुदैर्घ्य प्रतिबल को तनन प्रतिबल कहते हैं।

(b) संपीडन प्रतिबल (Compression Stress)—वस्तु की लम्बाई या आयतन में कमी होने पर उत्पन्न अनुदैर्घ्य प्रतिबल को संपीडन प्रतिबल कहते हैं।

वस्तु की संपीडन अवस्था में एकांक क्षेत्रफल पर कार्यरत प्रत्यानयन बल को संपीडन प्रतिबल कहते हैं।

(ii) आयतन प्रतिबल (Volume Stress)–किसी वस्तु के प्रत्येक तल पर समान मान के बल लगाने पर वस्तु के आयतन में परिवर्तन होता है। इस आयतन में परिवर्तन का विरोध करने वाले प्रति एकांक परिच्छेद क्षेत्रफल आन्तरिक बल को आयतन प्रतिबल कहते हैं। इसका मान एकांक क्षेत्रफल पर आरोपित बाहरी बल के बराबर होता है तथा प्रत्येक स्थान पर बाहरी बल के विपरीत दिशा में होता है।

(iii) अपरूपी प्रतिबल (Shearing Stress)—जब प्रतिबल वस्तु को सतह के समानान्तर या स्पर्शीय होता है तो उसे अपरूपी प्रतिबल कहते हैं। इसके कारण वस्तु की आकृति में परिवर्तन होता है।

8.2.2 विकृति (Strain)

बाहरी बलों के कारण किसी वस्तु के प्रति एकांक आकार में उत्पन्न परिवर्तन को विकृति कहते हैं।

> विकृति = वस्तु के आकार में परिवर्तन वस्तु का प्रारम्भिक आकार

विकृति का रूप आरोपित बल की दिशाओं पर निर्भर करता है। यह एक अनुपात है इसलिये इसकी कोई मात्रक तथा विमा नहीं होती है। विकृति तीन प्रकार की होती है–(i) अनुदैर्घ्य विकृति (ii) आयतन विकृति (iii) अपरूपण विकृति।

(i) अनुदैर्घ्य विकृति (Longitudinal Strain)—बाह्य बल के

2

ठोसों के यांत्रिक गुण

प्रभाव में किसी वस्तु की एकांक लम्बाई में उत्पन्न परिवर्तन को तनन या अनुदैर्घ्य विकृति कहते हैं।

चित्र—तनन प्रतिबल के प्रभाव में किसी बेलन का ∆L = I मान से विस्तारित होना।

$$=\frac{l}{L}=\frac{\Delta L}{L}$$

विरूपक बल को लम्बवत् में उत्पन्न रैखिक विकृति, पार्श्व विकृति कहलाती है।

उदाहरणार्थ — किसी तार को उसकी लम्बाई के अनुदिश खींचने पर उसकी लम्बाई तो बढ़ती है परन्तु उसका व्यास कम हो जाता है। लगाये गये बल की दिशा के लम्बवत् एकांक लम्बाई में होने वाले परिवर्तन को **पार्शिवक विकृति** (lateral strain) कहते हैं अर्थात्

पार्शिवक विकृति = बिल की दिशा के लम्बवत् लम्बाई में परिवर्तन बल की दिशा के लम्बवत् प्रारंभिक लम्बाई

(ii) आयतन विकृति (Volume Strain)-बाह्य बल के प्रभाव में किसी वस्तु के एकांक आयतन में उत्पन्न परिवर्तन को आयतन विकृति कहते हैं।

यदि किसी वस्तु का प्रारम्भिक आयतन V तथा आयतन में होने वाला परिवर्तन ΔV है तो

चित्र—समान जलीय प्रतिबल के प्रभाव में ठोस गोले के आयतन का ∆V मान से संकुचित होना।

(iii) अपरूपण विकृति (Shearing Strain)-जब किसी वस्तु के एक पृष्ठ को स्थिर रखकर इसके विपरीत पृष्ठ पर स्पर्श रेखीय विरूपक बल लगाया जाता है तो वस्तु की आकृति बदल जाती है तथा उसके आयतन या लम्बाई में कोई परिवर्तन नहीं होता। इस स्थिति में उत्पन्न विकृति को अपरूपण विकृति कहते हैं। इस प्रकार की विकृति केवल ठोसों में ही होती है।

अपरूपण कोण या अपरूपण विकृति को चित्र में कोण ф द्वारा दर्शाया गया है।

अत: अपरूपण विकृति (
$$\phi$$
) = $\frac{\Delta L}{L}$ = tan $\phi = \phi$

[क्योंकि ϕ का मान बहुत कम होता है, जिससे tan $\phi = \phi$]

8.3 हुक का नियम	
(Hooke's Law)	

कहते हैं। इसका मान पदार्थ की भौतिक अवस्थाओं व उसकी प्रकृति पर निर्भर करता है न कि प्रतिबल व विकृति पर। E का मात्रक न्यूटन/मी² तथा विमा M¹L⁻¹T⁻² है। हुक का नियम आनुभाविक (Empirical) नियम है व अधिकतर ठोस पदार्थ इसका अनुपालन करते हैं। यद्यपि कुछ

पदार्थ इस प्रकार का रैखिक संबंध (Linear Relation) नहीं दर्शाते। प्रत्यास्थता सीमा में प्रतिबल–विकृति आरेख एक सीधी रेखा से प्राप्त होती है, जिसका ढाल प्रत्यास्थता गुणांक (E) को व्यक्त करता है।

इस नियम के अनुसार, प्रत्यास्थता की सीमा के अन्दर, पदार्थ के अन्दर उत्पन्न विकृति पदार्थ पर कार्यरत प्रतिबल के समानुपाती होती है। अर्थात् प्रतिबल ∞ विकृति अथवा प्रतिबल = नियतांक (E) × विकृति ∴ नियतांक (E) = प्रतिबल विकृति इस स्थिरांक E को प्रत्यास्थता गुणांक (Modulus of elasticity)

परिच्छेद वाले स्टील के तार को एक दृढ़ आधार से लटकाकर उसके सिरे पर धीरे-धीरे भार बढ़ाया जा रहा है, इससे तार की लम्बाई बढ़ती जाती है। यदि भार बढ़ाते हुये समय-समय पर अनुदैर्घ्य प्रतिबल तथा अनुदैर्घ्य विकृति का मान निकालकर उनके बीच ग्राफ खींचें तो वह निम्न होगा–

हुक के नियम से, किसी वस्तु में उत्पन्न प्रतिबल, विकृति के अनुक्रमानुपाती होता है। लेकिन यह देखा गया है कि यह अनुक्रमानुपातिता केवल लघु विकृतियों के लिये ही पायी जाती है। तनन प्रतिबल के अधीन पदार्थ के व्यवहार को जानने हेतु माना कि किसी एकसमान

ग्राफ का प्रारम्भिक भार OA एक सीधी रेखा में है जिससे स्पष्ट होता है कि बिन्दु A तक तार की लम्बाई में वृद्धि उस पर लटकाये गये भार के अनुक्रमानुपाती है। बिन्दु A पर प्रतिबल के मान को 'अनुक्रमानुपाती सीमा' कहते हैं।

बिन्दु A के बाद ग्राफ वक्रीय होने लगता है। इससे यह पता चलता है कि तार पर भार और बढ़ाने पर उसकी लम्बाई में होने वाली वृद्धि, भार के अनुक्रमानुपाती नहीं रहती बल्कि उससे अधिक हो जाती है परन्तु बिन्दु B तक तार में प्रत्यास्थता का गुण बना रहता है। (अर्थात् भार के हटा लिये जाने से तार पुन: अपनी प्रारम्भिक लम्बाई में आ जाता है। बिन्दु B पर प्रतिबल के मान को 'प्रत्यास्थ सीमा' (Elastic limit) कहते हैं। प्रत्यास्थ सीमा, अनुक्रमानुपाती सीमा के समीप ही होती है। वक्र में बिन्दु B पराभव बिंदु अथवा प्रत्यास्थ सीमा कहलाता है और संगत प्रतिबल को द्रव्य का पराभव सामर्थ्य कहते हैं।

बिन्दु B से आगे, तार पर लटके भार की ओर दबाने पर तार की

लम्बाई में वृद्धि बहुत तेजी से होती है। इस दशा में भार को हटा लेने पर तार अपनी प्रारम्भिक लम्बाई में नहीं आता, बल्कि उसकी लम्बाई में कुछ स्थायी वृद्धि हो जाती है। बिन्दु C पर प्रतिबल अपने अधिकतम मान पर पहुँच जाता है, जिसे 'भंजक प्रतिबल' (Breaking Stress) कहते हैं। इस बिन्दु पर तार पतला होना प्रारम्भ हो जाता है तथा परिच्छेद एकसमान नहीं रहता। अब यदि तार पर लटके भार को कम भी किया जाये तो तार पतला होता रहता है तथा बिन्दु D तक पहुँचते-पहुँचते टूट जाता है। B व D के बीच के क्षेत्र को प्लास्टिक क्षेत्र कहते हैं। ग्राफ पर बिन्दु D द्रव्य की चरम तनन सामर्थ्य है। इस बिन्दु के आगे प्रत्यारोपित बल को घटाने पर भी अतिरिक्त विकृति उत्पन्न होती है और बिन्दु E पर विभंजन हो जाता है। कुछ धातुओं जैसे–सोना, चाँदी, ताँबा के लिये यह क्षेत्र काफी अधिक होता है। इन पदार्थों के तार बनाये जा सकते हैं। इन पदार्थों को तन्य (ductile) कहते हैं। कुछ पदार्थों में यह तन्य गुण नगण्य पाया जाता है तथा प्रत्यास्थता सीमा के पार होते ही वे टूटने लगते हैं। उन्हें भंगुर (brittle) कहते हैं।